Suppr超能文献

MARML:多层网络中基于基序感知的深度表征学习

MARML: Motif-Aware Deep Representation Learning in Multilayer Networks.

作者信息

Zhang Da, Kabuka Mansur R

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):11649-11660. doi: 10.1109/TNNLS.2023.3341347. Epub 2024 Sep 3.

Abstract

The rapid increase in high-throughput, complex, and heterogeneous data has led to the adoption of network-structured models and analyses for interpretation. However, these data are inherently complex and challenging to understand, prompting researchers to turn to graph embedding methods to facilitate analysis. While general network embedding techniques have shown promise in improving downstream prediction and classification tasks, real-world data are complicated due to cross-domain interactions between different types of entities. Multilayered networks have been successful in integrating biological data to represent biological systems' hierarchy, but embedding nodes based on different types of interactions remains an unsolved problem. To address this challenge, we propose the Motif-aware deep representation learning in multilayer (MARML) networks for learning network representations. Our method considers recurring motif patterns, topological information, and attributive information from other sources as node features. We validated the MARML method using various multilayer network datasets. In addition, by incorporating motif information, MARML considers higher order connections across different hierarchies. The learned features exhibited excellent accuracy in tasks related to link prediction and link differentiation, enabling us to distinguish between existing and disconnected triplets. Through the integration of both intrinsic node attributes and topological network structures, we enhance our understanding of complex biological systems.

摘要

高通量、复杂且异构的数据迅速增长,促使人们采用网络结构模型和分析方法来进行解读。然而,这些数据本质上复杂且难以理解,这促使研究人员转向图嵌入方法以促进分析。虽然一般的网络嵌入技术在改进下游预测和分类任务方面已显示出前景,但由于不同类型实体之间的跨域交互,现实世界的数据很复杂。多层网络已成功整合生物数据以表示生物系统的层次结构,但基于不同类型交互来嵌入节点仍然是一个未解决的问题。为应对这一挑战,我们提出了多层网络中基于基序感知的深度表示学习(MARML)方法来学习网络表示。我们的方法将反复出现的基序模式、拓扑信息以及来自其他来源的属性信息视为节点特征。我们使用各种多层网络数据集对MARML方法进行了验证。此外,通过纳入基序信息,MARML考虑了不同层次之间的高阶连接。所学习到的特征在与链接预测和链接区分相关的任务中表现出优异的准确性,使我们能够区分现有的三元组和不相连的三元组。通过整合内在节点属性和拓扑网络结构,我们加深了对复杂生物系统的理解。

相似文献

1
MARML: Motif-Aware Deep Representation Learning in Multilayer Networks.MARML:多层网络中基于基序感知的深度表征学习
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):11649-11660. doi: 10.1109/TNNLS.2023.3341347. Epub 2024 Sep 3.

本文引用的文献

3
Predicting multicellular function through multi-layer tissue networks.通过多层组织网络预测多细胞功能。
Bioinformatics. 2017 Jul 15;33(14):i190-i198. doi: 10.1093/bioinformatics/btx252.
5
Structural reducibility of multilayer networks.多层网络的结构约简。
Nat Commun. 2015 Apr 23;6:6864. doi: 10.1038/ncomms7864.
9
Transport on coupled spatial networks.耦合空间网络上的传输。
Phys Rev Lett. 2012 Sep 21;109(12):128703. doi: 10.1103/PhysRevLett.109.128703. Epub 2012 Sep 18.
10
The connectome of a decision-making neural network.决策神经网络的连接组图谱。
Science. 2012 Jul 27;337(6093):437-44. doi: 10.1126/science.1221762.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验