Department of Statistics, University of Illinois at Urbana-Champaign, Computing Applications Building, Room 152, 605 E. Springfield Ave., Champaign, IL, 61820, USA.
Psychometrika. 2024 Jun;89(2):592-625. doi: 10.1007/s11336-023-09940-7. Epub 2023 Dec 19.
Restricted latent class models (RLCMs) provide an important framework for diagnosing and classifying respondents on a collection of multivariate binary responses. Recent research made significant advances in theory for establishing identifiability conditions for RLCMs with binary and polytomous response data. Multiclass data, which are unordered nominal response data, are also widely collected in the social sciences and psychometrics via forced-choice inventories and multiple choice tests. We establish new identifiability conditions for parameters of RLCMs for multiclass data and discuss the implications for substantive applications. The new identifiability conditions are applicable to a wealth of RLCMs for polytomous and nominal response data. We propose a Bayesian framework for inferring model parameters, assess parameter recovery in a Monte Carlo simulation study, and present an application of the model to a real dataset.
受限潜在类别模型(RLCMs)为诊断和分类多元二分类响应提供了一个重要框架。最近的研究在建立具有二分类和多分类响应数据的 RLCM 可识别性条件方面取得了重大进展。多类数据是无序名义响应数据,在社会科学和心理计量学中也通过多项选择清单和多项选择题广泛收集。我们为多类数据的 RLCM 参数建立了新的可识别性条件,并讨论了对实际应用的影响。新的可识别性条件适用于大量多分类和名义响应数据的 RLCM。我们提出了一种贝叶斯框架来推断模型参数,评估蒙特卡罗模拟研究中的参数恢复情况,并展示了该模型在真实数据集上的应用。