Suppr超能文献

一种用于多分类反应的序列认知诊断模型。

A sequential cognitive diagnosis model for polytomous responses.

作者信息

Ma Wenchao, de la Torre Jimmy

机构信息

Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.

出版信息

Br J Math Stat Psychol. 2016 Nov;69(3):253-275. doi: 10.1111/bmsp.12070.

Abstract

This paper proposes a general polytomous cognitive diagnosis model for a special type of graded responses, where item categories are attained in a sequential manner, and associated with some attributes explicitly. To relate categories to attributes, a category-level Q-matrix is used. When the attribute and category association is specified a priori, the proposed model has the flexibility to allow different cognitive processes (e.g., conjunctive, disjunctive) to be modelled at different categories within a single item. This model can be extended for items where categories cannot be explicitly linked to attributes, and for items with unordered categories. The feasibility of the proposed model is examined using simulated data. The proposed model is illustrated using the data from the Trends in International Mathematics and Science Study 2007 assessment.

摘要

本文针对一种特殊类型的分级反应提出了一种通用的多分类认知诊断模型,其中项目类别以顺序方式获得,并与某些属性明确相关。为了将类别与属性联系起来,使用了类别级别的Q矩阵。当属性和类别关联事先确定时,所提出的模型具有灵活性,允许在单个项目的不同类别中对不同的认知过程(例如,合取、析取)进行建模。该模型可以扩展到类别无法明确与属性链接的项目,以及具有无序类别的项目。使用模拟数据检验了所提出模型的可行性。利用2007年国际数学和科学研究趋势评估的数据对所提出的模型进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验