Suppr超能文献

弱溶剂化效应诱导的最佳界面化学使水系锌离子电池的锌负极具有高耐久性。

Weak Solvation Effect Induced Optimal Interfacial Chemistry Enables Highly Durable Zn Anodes for Aqueous Zn-Ion Batteries.

作者信息

Cao Xianshuo, Xu Wei, Zheng Dezhou, Wang Fuxin, Wang Yi, Shi Xin, Lu Xihong

机构信息

College of Chemistry and Material Engineering, Guiyang University, 550005, Guiyang, P. R. China.

MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2024 Feb 5;63(6):e202317302. doi: 10.1002/anie.202317302. Epub 2024 Jan 4.

Abstract

Aqueous zinc-ion batteries (AZIBs) are emerging as one of the most reliable energy storage technologies for scale-up applications, but still suffer from the instability of Zn anode, which is mainly caused by the undesirable dendrite growth and side reactions. To tackle these issues, we formulate a new aqueous electrolyte with weak solvation effect by introducing low-dielectric-constant acetone to achieve H O-poor solvation structure of Zn . Experimental and theoretical calculation studies concurrently reveal that such solvation structure can: i) relieve the solvated H O related side reactions, ii) suppress the dendrite growth by boosting the desolvation kinetics of Zn and iii) in situ form solid electrolyte interface (SEI) to synergistically inhibit the side reaction and dendrite growth. The synergy of these three factors prolongs the cycling life of Cu/Zn asymmetric cell from 30 h to more than 800 h at 1 mA cm /1 mAh cm , and can work at more harsh condition of 5 mA cm /5 mAh cm . More encouragingly, Zn/V O  ⋅ nH O full cell also shows enhanced cycling stability of 95.9 % capacity retention after 1000 cycles, much better than that with baseline electrolyte (failing at ≈700  cycle).

摘要

水系锌离子电池(AZIBs)正成为最可靠的储能技术之一,可用于大规模应用,但仍存在锌负极不稳定的问题,这主要是由不良的枝晶生长和副反应引起的。为了解决这些问题,我们通过引入低介电常数的丙酮来配制一种具有弱溶剂化效应的新型水系电解质,以实现锌的贫水合溶剂化结构。实验和理论计算研究同时表明,这种溶剂化结构可以:i)减轻与水合水相关的副反应,ii)通过提高锌的去溶剂化动力学来抑制枝晶生长,iii)原位形成固体电解质界面(SEI),协同抑制副反应和枝晶生长。这三个因素的协同作用将Cu/Zn不对称电池在1 mA cm⁻²/1 mAh cm⁻²条件下的循环寿命从30小时延长至800多小时,并且可以在5 mA cm⁻²/5 mAh cm⁻²的更苛刻条件下工作。更令人鼓舞的是,Zn/V₂O₅·nH₂O全电池在1000次循环后也显示出增强的循环稳定性,容量保持率为95.9%,远优于使用基线电解质的情况(在约700次循环时失效)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验