Liu Zhenjie, Xi Murong, Sheng Rui, Huang Yudai, Ding Juan, Tan Zhouliang, Li Jiapei, Zhang Wenjun, Wang Yonggang
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, People's Republic of China.
Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.
Nanomicro Lett. 2025 Jan 28;17(1):120. doi: 10.1007/s40820-025-01649-9.
Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent. The Zn(TFSI) salt catalyzes the ring-opening polymerization of (1,3-dioxolane (DOL)), generating oxidation-resistant and non-combustible long-chain polymer (poly(1,3-dioxolane) (pDOL)). The pDOL reduces the active HO molecules in electrolyte and assists in forming stable organic-inorganic gradient solid electrolyte interphase with rich organic constituents, ZnO and ZnF. The introduction of pDOL endows the electrolyte with several advantages: excellent Zn dendrite inhibition, improved corrosion resistance, widened electrochemical window (2.6 V), and enhanced low-temperature performance (freezing point = - 34.9 °C). Zn plating/stripping in pDOL-enhanced electrolyte lasts for 4200 cycles at 99.02% Coulomb efficiency and maintains a lifetime of 8200 h. Moreover, Zn metal anodes deliver stable cycling for 2500 h with a high Zn utilization of 60%. A Zn//VO pouch cell assembled with lean electrolyte (electrolyte/capacity (E/C = 41 mL (Ah)) also demonstrates a capacity retention ratio of 92% after 600 cycles. These results highlight the promising application prospects of practical Zn metal batteries enabled by the Zn(TFSI)-mediated electrolyte engineering.
实用的锌金属电池受到了诸多挑战的阻碍,包括锌枝晶生长、不良副反应以及不稳定的电极/电解质界面。这些问题在低浓度电解质中尤为严重。在此,我们设计了一种通过小分子有机溶剂原位开环聚合制备的锌盐介导电解质。Zn(TFSI)盐催化(1,3 - 二氧戊环(DOL))的开环聚合,生成抗氧化且不可燃的长链聚合物(聚(1,3 - 二氧戊环)(pDOL))。pDOL减少了电解质中的活性HO分子,并有助于形成具有丰富有机成分、ZnO和ZnF的稳定有机 - 无机梯度固体电解质界面。pDOL的引入赋予了电解质诸多优点:出色的锌枝晶抑制能力、 improved corrosion resistance, widened electrochemical window (2.6 V), and enhanced low-temperature performance (freezing point = - 34.9 °C). 在pDOL增强的电解质中进行锌电镀/剥离,在99.02%的库仑效率下可持续4200次循环,并保持8200小时的寿命。此外,锌金属阳极在60%的高锌利用率下可稳定循环2500小时。采用贫电解质(电解质/容量(E/C = 41 mL (Ah))组装的Zn//VO软包电池在600次循环后也表现出92%的容量保持率。这些结果突出了由Zn(TFSI)介导的电解质工程实现的实用锌金属电池具有广阔的应用前景。 (原文中“improved corrosion resistance”处英文表述有误,推测正确表述应为“improved corrosion resistance”,即“提高的耐腐蚀性”,翻译时按此修正后翻译)