Fang Meng, Lyu Li, Wang Ning, Zhou Xiaolei, Hu Yankun
University of Chinese Academy of Sciences, Beijing, China.
Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang, China.
Sci Rep. 2023 Dec 20;13(1):22774. doi: 10.1038/s41598-023-50301-2.
Surface water monitoring data has spatiotemporal characteristics, and water quality will change with time and space in different seasons and climates. Data of this nature brings challenges to clustering, especially in terms of obtaining the temporal and spatial characteristics of the data. Therefore, this paper proposes an improved TADW algorithm and names it RTADW to obtain the spatiotemporal characteristics of surface water monitoring points. We improve the feature matrix in TADW and input the original time series data and spatial information into the improved model to obtain the spatiotemporal feature vector. When the improved TADW model captures watershed information for clustering, it can simultaneously extract the temporal and spatial characteristics of surface water compared with other clustering algorithms such as the DTW algorithm. We applied the proposed method to multiple different monitoring sites in the Liaohe River Basin, analyzed the spatiotemporal regional distribution of surface water monitoring points. The results show that the improved feature extraction method can better capture the spatiotemporal feature information between surface water monitoring points. Therefore, this method can provide more potential information for cluster analysis of water environment monitoring, thereby providing a scientific basis for watershed zoning management.
地表水监测数据具有时空特征,水质会随不同季节和气候的时间与空间而变化。这种性质的数据给聚类带来了挑战,尤其是在获取数据的时空特征方面。因此,本文提出一种改进的TADW算法并将其命名为RTADW,以获取地表水监测点的时空特征。我们改进了TADW中的特征矩阵,并将原始时间序列数据和空间信息输入到改进后的模型中,以获得时空特征向量。当改进的TADW模型捕获流域信息进行聚类时,与DTW算法等其他聚类算法相比,它可以同时提取地表水的时空特征。我们将所提出的方法应用于辽河流域的多个不同监测站点,分析了地表水监测点的时空区域分布。结果表明,改进后的特征提取方法能够更好地捕获地表水监测点之间的时空特征信息。因此,该方法可为水环境监测的聚类分析提供更多潜在信息,从而为流域分区管理提供科学依据。