Deng Weihui, Wang Guoyin
Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
J Environ Manage. 2017 Jul 1;196:365-375. doi: 10.1016/j.jenvman.2017.03.024. Epub 2017 Mar 18.
The rapid development of time-series data mining provides an emerging method for water resource management research. In this paper, based on the time-series data mining methodology, we propose a novel and general analysis framework for water quality time-series data. It consists of two parts: implementation components and common tasks of time-series data mining in water quality data. In the first part, we propose to granulate the time series into several two-dimensional normal clouds and calculate the similarities in the granulated level. On the basis of the similarity matrix, the similarity search, anomaly detection, and pattern discovery tasks in the water quality time-series instance dataset can be easily implemented in the second part. We present a case study of this analysis framework on weekly Dissolve Oxygen time-series data collected from five monitoring stations on the upper reaches of Yangtze River, China. It discovered the relationship of water quality in the mainstream and tributary as well as the main changing patterns of DO. The experimental results show that the proposed analysis framework is a feasible and efficient method to mine the hidden and valuable knowledge from water quality historical time-series data.
时间序列数据挖掘的快速发展为水资源管理研究提供了一种新兴方法。本文基于时间序列数据挖掘方法,提出了一种新颖且通用的水质时间序列数据分析框架。它由两部分组成:水质数据中时间序列数据挖掘的实现组件和常见任务。在第一部分中,我们建议将时间序列粒化为若干二维正态云并计算粒化层面的相似度。基于相似度矩阵,在第二部分中可以轻松实现水质时间序列实例数据集中的相似度搜索、异常检测和模式发现任务。我们对从中国长江上游五个监测站收集的每周溶解氧时间序列数据进行了该分析框架的案例研究。它发现了干流和支流中水质的关系以及溶解氧的主要变化模式。实验结果表明,所提出的分析框架是一种从水质历史时间序列数据中挖掘隐藏且有价值知识的可行且高效的方法。