Laboratoire d'Analyse Non linéaire et Mathématiques Appliquées, Department of Mathematics, Faculty of Sciences, University of Tlemcen, Algeria.
Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France.
Math Biosci Eng. 2023 Nov 16;20(12):20683-20711. doi: 10.3934/mbe.2023915.
We propose an epidemiological model for the interaction of either two viruses or viral strains with cross-immunity, where the individuals infected by the first virus cannot be infected by the second one, and without cross-immunity, where a secondary infection can occur. The model incorporates distributed recovery and death rates and consists of integro-differential equations governing the dynamics of susceptible, infectious, recovered, and dead compartments. Assuming that the recovery and death rates are uniformly distributed in time throughout the duration of the diseases, we can simplify the model to a conventional ordinary differential equation (ODE) model. Another limiting case arises if the recovery and death rates are approximated by the delta-function, thereby resulting in a new point-wise delay model that incorporates two time delays corresponding to the durations of the diseases. We establish the positiveness of solutions for the distributed delay models and determine the basic reproduction number and an estimate for the final size of the epidemic for the delay model. According to the results of the numerical simulations, both strains can coexist in the population if the disease transmission rates for them are close to each other. If the difference between them is sufficiently large, then one of the strains dominates and eliminates the other one.
我们提出了一个关于具有交叉免疫的两种病毒或病毒株相互作用的流行病学模型,其中被第一种病毒感染的个体不能被第二种病毒感染,并且没有交叉免疫,其中会发生二次感染。该模型包含分布式恢复和死亡率,由易感、感染、恢复和死亡部分的动力学控制的积分微分方程组成。假设恢复和死亡率在疾病持续时间内均匀分布在时间上,我们可以将模型简化为常规的常微分方程(ODE)模型。如果恢复和死亡率近似为 delta 函数,则会出现另一个极限情况,从而产生一个新的点延迟模型,该模型包含与疾病持续时间相对应的两个时间延迟。我们为分布式延迟模型建立了解的正定性,并确定了延迟模型的基本繁殖数和流行病的最终规模估计。根据数值模拟的结果,如果它们的疾病传播率彼此接近,则两种菌株都可以在种群中共存。如果它们之间的差异足够大,则其中一种菌株占主导地位并消灭另一种菌株。