Suppr超能文献

scMoMtF:一种用于单细胞多组学数据分析的可解释多任务学习框架。

scMoMtF: An interpretable multitask learning framework for single-cell multi-omics data analysis.

作者信息

Lan Wei, Ling Tongsheng, Chen Qingfeng, Zheng Ruiqing, Li Min, Pan Yi

机构信息

Guangxi Key Laboratory of Multimedia Communications and Network Technology, School of computer, electronic and information, Guangxi university, Nanning, Guangxi, China.

School of computer and engineering, Central South University, Changsha, Hunan, China.

出版信息

PLoS Comput Biol. 2024 Dec 18;20(12):e1012679. doi: 10.1371/journal.pcbi.1012679. eCollection 2024 Dec.

Abstract

With the rapidly development of biotechnology, it is now possible to obtain single-cell multi-omics data in the same cell. However, how to integrate and analyze these single-cell multi-omics data remains a great challenge. Herein, we introduce an interpretable multitask framework (scMoMtF) for comprehensively analyzing single-cell multi-omics data. The scMoMtF can simultaneously solve multiple key tasks of single-cell multi-omics data including dimension reduction, cell classification and data simulation. The experimental results shows that scMoMtF outperforms current state-of-the-art algorithms on these tasks. In addition, scMoMtF has interpretability which allowing researchers to gain a reliable understanding of potential biological features and mechanisms in single-cell multi-omics data.

摘要

随着生物技术的快速发展,现在有可能在同一个细胞中获得单细胞多组学数据。然而,如何整合和分析这些单细胞多组学数据仍然是一个巨大的挑战。在此,我们引入了一个可解释的多任务框架(scMoMtF)来全面分析单细胞多组学数据。scMoMtF可以同时解决单细胞多组学数据的多个关键任务,包括降维、细胞分类和数据模拟。实验结果表明,scMoMtF在这些任务上优于当前最先进的算法。此外,scMoMtF具有可解释性,这使研究人员能够可靠地了解单细胞多组学数据中的潜在生物学特征和机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec90/11654984/99b9a699ec0d/pcbi.1012679.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验