Suppr超能文献

SUMMIT-FA:利用功能注释提高转录本推断的新资源。

SUMMIT-FA: a new resource for improved transcriptome imputation using functional annotations.

机构信息

Department of Statistics, Florida State University, 214 Rogers Building, 117 N. Woodward Avenue, Tallahassee, FL 32306, United States.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 7007 Bertner Avenue, Unit 1689, Houston, TX 77030, United States.

出版信息

Hum Mol Genet. 2024 Mar 20;33(7):624-635. doi: 10.1093/hmg/ddad205.

Abstract

Transcriptome-wide association studies (TWAS) integrate gene expression prediction models and genome-wide association studies (GWAS) to identify gene-trait associations. The power of TWAS is determined by the sample size of GWAS and the accuracy of the expression prediction model. Here, we present a new method, the Summary-level Unified Method for Modeling Integrated Transcriptome using Functional Annotations (SUMMIT-FA), which improves gene expression prediction accuracy by leveraging functional annotation resources and a large expression quantitative trait loci (eQTL) summary-level dataset. We build gene expression prediction models in whole blood using SUMMIT-FA with the comprehensive functional database MACIE and eQTL summary-level data from the eQTLGen consortium. We apply these models to GWAS for 24 complex traits and show that SUMMIT-FA identifies significantly more gene-trait associations and improves predictive power for identifying "silver standard" genes compared to several benchmark methods. We further conduct a simulation study to demonstrate the effectiveness of SUMMIT-FA.

摘要

转录组关联研究(TWAS)将基因表达预测模型和全基因组关联研究(GWAS)整合在一起,以鉴定基因-性状关联。TWAS 的功效取决于 GWAS 的样本量和表达预测模型的准确性。在这里,我们提出了一种新的方法,即使用功能注释进行综合转录组建模的汇总级统一方法(SUMMIT-FA),该方法通过利用功能注释资源和大型表达数量性状基因座(eQTL)汇总数据集来提高基因表达预测准确性。我们使用 SUMMIT-FA 构建了使用全面功能数据库 MACIE 和来自 eQTLGen 联盟的 eQTL 汇总数据集的全血基因表达预测模型。我们将这些模型应用于 24 种复杂性状的 GWAS,并表明 SUMMIT-FA 比几种基准方法鉴定出更多的基因-性状关联,并提高了鉴定“银标准”基因的预测能力。我们还进行了一项模拟研究,以证明 SUMMIT-FA 的有效性。

相似文献

1
SUMMIT-FA: a new resource for improved transcriptome imputation using functional annotations.
Hum Mol Genet. 2024 Mar 20;33(7):624-635. doi: 10.1093/hmg/ddad205.
2
SUMMIT-FA: A new resource for improved transcriptome imputation using functional annotations.
medRxiv. 2023 Feb 6:2023.02.02.23285208. doi: 10.1101/2023.02.02.23285208.
5
Statistical power of transcriptome-wide association studies.
Genet Epidemiol. 2022 Dec;46(8):572-588. doi: 10.1002/gepi.22491. Epub 2022 Jun 29.
8
Brain and blood transcriptome-wide association studies identify five novel genes associated with Alzheimer's disease.
J Alzheimers Dis. 2025 May;105(1):228-244. doi: 10.1177/13872877251326288. Epub 2025 Mar 20.
10
Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia.
Genet Epidemiol. 2018 Apr;42(3):303-316. doi: 10.1002/gepi.22110. Epub 2018 Feb 7.

本文引用的文献

1
Causal Inference in Transcriptome-Wide Association Studies with Invalid Instruments and GWAS Summary Data.
J Am Stat Assoc. 2023;118(543):1525-1537. doi: 10.1080/01621459.2023.2183127. Epub 2023 Mar 17.
4
Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies.
Nat Genet. 2023 Jan;55(1):154-164. doi: 10.1038/s41588-022-01225-6. Epub 2022 Dec 23.
5
FAVOR: functional annotation of variants online resource and annotator for variation across the human genome.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1300-D1311. doi: 10.1093/nar/gkac966.
7
The RalGAPα1-RalA signal module protects cardiac function through regulating calcium homeostasis.
Nat Commun. 2022 Jul 25;13(1):4278. doi: 10.1038/s41467-022-31992-z.
8
Statistical power of transcriptome-wide association studies.
Genet Epidemiol. 2022 Dec;46(8):572-588. doi: 10.1002/gepi.22491. Epub 2022 Jun 29.
10
STAAR workflow: a cloud-based workflow for scalable and reproducible rare variant analysis.
Bioinformatics. 2022 May 26;38(11):3116-3117. doi: 10.1093/bioinformatics/btac272.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验