Bioinformatics and Genomics Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
Nat Commun. 2022 Jun 7;13(1):3258. doi: 10.1038/s41467-022-30956-7.
Transcriptome-wide association studies (TWAS) are popular approaches to test for association between imputed gene expression levels and traits of interest. Here, we propose an integrative method PUMICE (Prediction Using Models Informed by Chromatin conformations and Epigenomics) to integrate 3D genomic and epigenomic data with expression quantitative trait loci (eQTL) to more accurately predict gene expressions. PUMICE helps define and prioritize regions that harbor cis-regulatory variants, which outperforms competing methods. We further describe an extension to our method PUMICE +, which jointly combines TWAS results from single- and multi-tissue models. Across 79 traits, PUMICE + identifies 22% more independent novel genes and increases median chi-square statistics values at known loci by 35% compared to the second-best method, as well as achieves the narrowest credible interval size. Lastly, we perform computational drug repurposing and confirm that PUMICE + outperforms other TWAS methods.
转录组全基因组关联研究(TWAS)是一种常用的方法,用于检验基因表达水平与感兴趣性状之间的关联。在这里,我们提出了一种整合方法 PUMICE(基于染色质构象和表观基因组学模型的预测),将 3D 基因组和表观基因组数据与表达数量性状基因座(eQTL)整合,以更准确地预测基因表达。PUMICE 有助于定义和优先考虑包含顺式调控变异的区域,其表现优于竞争方法。我们进一步描述了我们的方法 PUMICE+的扩展,该方法联合了单组织和多组织模型的 TWAS 结果。在 79 个特征中,与排名第二的方法相比,PUMICE+ 可以识别出 22%更多的独立新基因,并将已知基因座的中位数卡方统计值提高 35%,同时实现了最窄的可信区间大小。最后,我们进行了计算药物重新定位,并证实 PUMICE+ 优于其他 TWAS 方法。