Suppr超能文献

使用Huber罚函数凸优化函数从基因表达数据预测代谢通量

Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function.

作者信息

Zhang Shao-Wu, Gou Wang-Long, Li Yan

机构信息

Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China.

出版信息

Mol Biosyst. 2017 May 2;13(5):901-909. doi: 10.1039/c6mb00811a.

Abstract

As one of the critical parameters of a metabolic pathway, the metabolic flux in a metabolic network serves as an essential role in physiology and pathology. Constraint-based metabolic models are the widely used frameworks for predicting metabolic fluxes in genome-scale metabolic networks. Integrating the transcriptomic data into the constraint-based metabolic models can effectively predict context-specific fluxes across different conditions. However, these methods always need user-defined thresholds to identify the expression levels of metabolic genes or restrain the rate of biomass production, and the predictive results are sensitive to the thresholds. In this work, we present the Huber penalty convex optimization function (HPCOF) combined with the flux minimization principle to predict metabolic fluxes. Our HPCOF method integrates gene expression profiles into the genome-scale metabolic models (GEMs) to reduce the sensitivity to outliers, and uses continuous expression data to avoid selection of arbitrary threshold parameters. In the case studies of Saccharomyces cerevisiae (S. cerevisiae) and Escherichia coli (E. coli) strains under different conditions, the results show that our HPCOF method has a better fit to the experimentally measured values, and has a higher Pearson correlation coefficient, a smaller P-value and a lower sum of squared error than other methods. The HPCOF code can be freely downloaded from for academic users.

摘要

作为代谢途径的关键参数之一,代谢网络中的代谢通量在生理学和病理学中起着至关重要的作用。基于约束的代谢模型是预测基因组规模代谢网络中代谢通量广泛使用的框架。将转录组数据整合到基于约束的代谢模型中可以有效地预测不同条件下特定背景的通量。然而,这些方法总是需要用户定义阈值来识别代谢基因的表达水平或限制生物量产生的速率,并且预测结果对阈值敏感。在这项工作中,我们提出了结合通量最小化原理的Huber罚凸优化函数(HPCOF)来预测代谢通量。我们的HPCOF方法将基因表达谱整合到基因组规模代谢模型(GEMs)中以降低对异常值的敏感性,并使用连续表达数据来避免选择任意阈值参数。在酿酒酵母(Saccharomyces cerevisiae)和大肠杆菌(Escherichia coli)菌株在不同条件下的案例研究中,结果表明我们的HPCOF方法与实验测量值拟合得更好,并且与其他方法相比具有更高的皮尔逊相关系数、更小的P值和更低的均方误差之和。HPCOF代码可供学术用户免费下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验