Suppr超能文献

个性化对使用扩展卡尔曼滤波器的步态状态跟踪性能的影响。

Effects of Personalization on Gait-State Tracking Performance Using Extended Kalman Filters.

作者信息

Montes-Pérez José A, Thomas Gray Cortright, Gregg Robert D

机构信息

Department of Robotics, University of Michigan, Ann Arbor, MI 48109 USA.

出版信息

Rep U S. 2023 Oct;2023:6068-6074. doi: 10.1109/iros55552.2023.10342498. Epub 2023 Dec 13.

Abstract

Emerging partial-assistance exoskeletons can enhance able-bodied performance and aid people with pathological gait or age-related immobility. However, every person walks differently, which makes it difficult to directly compute assistance torques from joint kinematics. Gait-state estimation-based controllers use phase (normalized stride time) and task variables (e.g., stride length and ground inclination) to parameterize the joint torques. Using kinematic models that depend on the gait-state, prior work has used an Extended Kalman filter (EKF) to estimate the gait-state online. However, this EKF suffered from kinematic errors since it used a subject-independent measurement model, and it is still unknown how personalization of this measurement model would reduce gait-state tracking error. This paper quantifies how much gait-state tracking improvement a personalized measurement model can have over a subject-independent measurement model when using an EKF-based gait-state estimator. Since the EKF performance depends on the measurement model covariance matrix, we tested on multiple different tuning parameters. Across reasonable values of tuning parameters that resulted in good performance, personalization improved estimation error on average by 8.5 ± 13.8% for phase (mean ± standard deviation), 27.2 ± 8.1% for stride length, and 10.5 ± 13.5% for ground inclination. These findings support the hypothesis that personalization of the measurement model significantly improves gait-state estimation performance in EKF based gait-state tracking (), which could ultimately enable reliable responses to faster human gait changes.

摘要

新兴的部分辅助外骨骼可以增强健全人的运动能力,并帮助患有病理性步态或与年龄相关的行动不便的人。然而,每个人的行走方式都不同,这使得难以直接根据关节运动学计算辅助扭矩。基于步态状态估计的控制器使用相位(归一化步幅时间)和任务变量(例如步幅长度和地面倾斜度)来参数化关节扭矩。先前的工作使用依赖于步态状态的运动学模型,通过扩展卡尔曼滤波器(EKF)在线估计步态状态。然而,这种EKF存在运动学误差,因为它使用的是与个体无关的测量模型,而且这种测量模型的个性化如何减少步态状态跟踪误差仍然未知。本文量化了在使用基于EKF的步态状态估计器时,个性化测量模型相对于与个体无关的测量模型在步态状态跟踪方面能有多大的改进。由于EKF的性能取决于测量模型协方差矩阵,我们在多个不同的调谐参数上进行了测试。在导致良好性能的合理调谐参数值范围内,个性化使相位(均值±标准差)的估计误差平均提高了8.5±13.8%,步幅长度的估计误差提高了27.2±8.1%,地面倾斜度的估计误差提高了10.5±13.5%。这些发现支持了这样一个假设,即测量模型的个性化在基于EKF的步态状态跟踪中显著提高了步态状态估计性能(),这最终可能实现对更快的人类步态变化的可靠响应。

相似文献

2
Sparse Visual-Inertial Measurement Units Placement for Gait Kinematics Assessment.稀疏视觉-惯性测量单元放置用于步态运动学评估。
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1300-1311. doi: 10.1109/TNSRE.2021.3089873. Epub 2021 Jul 12.

本文引用的文献

7
Optimizing Exoskeleton Assistance for Faster Self-Selected Walking.优化外骨骼辅助以实现更快的自主行走。
IEEE Trans Neural Syst Rehabil Eng. 2021;29:786-795. doi: 10.1109/TNSRE.2021.3074154. Epub 2021 May 3.
8
Analysis of Continuously Varying Kinematics for Prosthetic Leg Control Applications.用于假肢控制应用的连续变化运动学分析。
IEEE Trans Neural Syst Rehabil Eng. 2021;29:262-272. doi: 10.1109/TNSRE.2020.3045003. Epub 2021 Mar 1.
10
Modeling the Kinematics of Human Locomotion Over Continuously Varying Speeds and Inclines.建模人类在连续变速和倾斜地形中的运动学。
IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2342-2350. doi: 10.1109/TNSRE.2018.2879570. Epub 2018 Nov 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验