Suppr超能文献

一种预测耐药突变逐步积累中最可能进化轨迹的计算方法。

A computational method for predicting the most likely evolutionary trajectories in the stepwise accumulation of resistance mutations.

机构信息

Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.

Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom.

出版信息

Elife. 2023 Dec 22;12:e84756. doi: 10.7554/eLife.84756.

Abstract

Pathogen evolution of drug resistance often occurs in a stepwise manner via the accumulation of multiple mutations that in combination have a non-additive impact on fitness, a phenomenon known as epistasis. The evolution of resistance via the accumulation of point mutations in the DHFR genes of () and () has been studied extensively and multiple studies have shown epistatic interactions between these mutations determine the accessible evolutionary trajectories to highly resistant multiple mutations. Here, we simulated these evolutionary trajectories using a model of molecular evolution, parameterised using Rosetta Flex ddG predictions, where selection acts to reduce the target-drug binding affinity. We observe strong agreement with pathways determined using experimentally measured IC50 values of pyrimethamine binding, which suggests binding affinity is strongly predictive of resistance and epistasis in binding affinity strongly influences the order of fixation of resistance mutations. We also infer pathways directly from the frequency of mutations found in isolate data, and observe remarkable agreement with the most likely pathways predicted by our mechanistic model, as well as those determined experimentally. This suggests mutation frequency data can be used to intuitively infer evolutionary pathways, provided sufficient sampling of the population.

摘要

耐药性的病原体进化通常是通过多个突变的积累逐步发生的,这些突变的组合对适应性具有非加性的影响,这种现象称为上位性。通过 () 和 () 的 DHFR 基因中的点突变的积累来研究耐药性的进化,并且已经进行了多项研究表明,这些突变之间的上位性相互作用决定了对高度耐药的多种突变的可访问的进化轨迹。在这里,我们使用分子进化模型来模拟这些进化轨迹,该模型使用 Rosetta Flex ddG 预测进行参数化,其中选择作用是降低靶标-药物结合亲和力。我们观察到与使用实验测量的嘧啶甲嘧啶结合的 IC50 值确定的途径非常一致,这表明结合亲和力对耐药性和结合亲和力中的上位性具有很强的预测性,强烈影响耐药性突变的固定顺序。我们还直接从分离株数据中发现的突变频率推断途径,并且观察到与我们的机制模型预测的最可能途径以及实验确定的途径非常一致。这表明只要对种群进行充分的采样,突变频率数据就可以用于直观地推断进化途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d3/10807863/78af8a8c1e15/elife-84756-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验