Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.
Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, Québec, Canada.
PLoS Genet. 2024 Apr 29;20(4):e1011252. doi: 10.1371/journal.pgen.1011252. eCollection 2024 Apr.
Pneumocystis jirovecii is a fungal pathogen that causes pneumocystis pneumonia, a disease that mainly affects immunocompromised individuals. This fungus has historically been hard to study because of our inability to grow it in vitro. One of the main drug targets in P. jirovecii is its dihydrofolate reductase (PjDHFR). Here, by using functional complementation of the baker's yeast ortholog, we show that PjDHFR can be inhibited by the antifolate methotrexate in a dose-dependent manner. Using deep mutational scanning of PjDHFR, we identify mutations conferring resistance to methotrexate. Thirty-one sites spanning the protein have at least one mutation that leads to resistance, for a total of 355 high-confidence resistance mutations. Most resistance-inducing mutations are found inside the active site, and many are structurally equivalent to mutations known to lead to resistance to different antifolates in other organisms. Some sites show specific resistance mutations, where only a single substitution confers resistance, whereas others are more permissive, as several substitutions at these sites confer resistance. Surprisingly, one of the permissive sites (F199) is without direct contact to either ligand or cofactor, suggesting that it acts through an allosteric mechanism. Modeling changes in binding energy between F199 mutants and drug shows that most mutations destabilize interactions between the protein and the drug. This evidence points towards a more important role of this position in resistance than previously estimated and highlights potential unknown allosteric mechanisms of resistance to antifolate in DHFRs. Our results offer unprecedented resources for the interpretation of mutation effects in the main drug target of an uncultivable fungal pathogen.
肺孢子菌是一种真菌病原体,可引起肺孢子菌肺炎,主要影响免疫功能低下的个体。由于我们无法在体外培养这种真菌,因此历史上很难对其进行研究。肺孢子菌的主要药物靶点之一是其二氢叶酸还原酶(PjDHFR)。在这里,通过利用酿酒酵母同源物的功能互补,我们表明PjDHFR 可以被抗叶酸药物氨甲蝶呤以剂量依赖的方式抑制。通过对 PjDHFR 的深度突变扫描,我们确定了赋予对氨甲蝶呤抗性的突变。跨越该蛋白的 31 个位点至少有一个导致抗性的突变,总共鉴定出 355 个高置信度的抗性突变。大多数诱导抗性的突变发生在活性位点内,许多与其他生物体中导致对不同抗叶酸药物产生抗性的突变在结构上等效。一些位点显示出特定的抗性突变,其中只有单个取代就能赋予抗性,而其他位点则更具宽容性,因为这些位点的几个取代也能赋予抗性。令人惊讶的是,一个宽容性位点(F199)与配体或辅因子没有直接接触,这表明它通过别构机制起作用。建模 F199 突变体与药物之间结合能的变化表明,大多数突变会破坏蛋白与药物之间的相互作用。这些证据表明该位置在抗性中的作用比以前估计的更为重要,并强调了 DHFR 对抗叶酸药物抗性的未知别构机制。我们的研究结果为解释难以培养的真菌病原体主要药物靶点中的突变效应提供了前所未有的资源。