Suppr超能文献

一种调节卤化铅钙钛矿纳米晶体中电子-声子耦合和载流子冷却的策略。

A Strategy for Tuning Electron-Phonon Coupling and Carrier Cooling in Lead Halide Perovskite Nanocrystals.

作者信息

Shi Huafeng, Zhang Xiaoli, Li Ruxue, Zhang Xinhai

机构信息

Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Center of Attosecond Science, Songshan Lake Materials Laboratory (SLAB), Dongguan 523808, China.

出版信息

Nanomaterials (Basel). 2023 Dec 13;13(24):3134. doi: 10.3390/nano13243134.

Abstract

Perovskites have been recognized as a class of promising materials for optoelectronic devices. We intentionally include excessive Cs cations in precursors in the synthesis of perovskite CsPbBr nanocrystals and investigate how the Cs cations influence the lattice strain in these perovskite nanocrystals. Upon light illumination, the lattice strain due to the addition of alkali metal Cs cations can be compensated by light-induced lattice expansion. When the Cs cation in precursors is about 10% excessive, the electron-phonon coupling strength can be reduced by about 70%, and the carrier cooling can be slowed down about 3.5 times in lead halide perovskite CsPbBr nanocrystals. This work reveals a new understanding of the role of Cs cations, which take the A-site in ABX perovskite and provide a new way to improve the performance of perovskites and their practical devices further.

摘要

钙钛矿已被公认为是一类用于光电器件的有前途的材料。我们在合成钙钛矿CsPbBr纳米晶体时,在前驱体中故意加入过量的Cs阳离子,并研究Cs阳离子如何影响这些钙钛矿纳米晶体中的晶格应变。光照时,由于添加碱金属Cs阳离子而产生的晶格应变可通过光致晶格膨胀得到补偿。当前驱体中的Cs阳离子过量约10%时,卤化铅钙钛矿CsPbBr纳米晶体中的电子-声子耦合强度可降低约70%,载流子冷却速度可减慢约3.5倍。这项工作揭示了对Cs阳离子作用的新认识,Cs阳离子占据ABX钙钛矿中的A位,并为进一步提高钙钛矿及其实际器件的性能提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaa8/10745929/ffd1b15b9476/nanomaterials-13-03134-g001.jpg

相似文献

1
A Strategy for Tuning Electron-Phonon Coupling and Carrier Cooling in Lead Halide Perovskite Nanocrystals.
Nanomaterials (Basel). 2023 Dec 13;13(24):3134. doi: 10.3390/nano13243134.
2
Harnessing Hot Phonon Bottleneck in Metal Halide Perovskite Nanocrystals via Interfacial Electron-Phonon Coupling.
Nano Lett. 2020 Jun 10;20(6):4610-4617. doi: 10.1021/acs.nanolett.0c01452. Epub 2020 May 20.
3
Charge-Carrier Dynamics of Lead-Free Halide Perovskite Nanocrystals.
Acc Chem Res. 2019 Nov 19;52(11):3188-3198. doi: 10.1021/acs.accounts.9b00422. Epub 2019 Oct 30.
4
Stacking Effects on Electron-Phonon Coupling in Layered Hybrid Perovskites Microstrain Manipulation.
ACS Nano. 2020 May 26;14(5):5806-5817. doi: 10.1021/acsnano.0c00907. Epub 2020 Apr 23.
6
Cs-Lattice Extension and Expansion for Inducing Secondary Growth of CsPbBr Perovskite Nanocrystals.
ACS Nano. 2021 Oct 26;15(10):16183-16193. doi: 10.1021/acsnano.1c05053. Epub 2021 Oct 12.
8
Direct Observation of Ultrafast Lattice Distortions during Exciton-Polaron Formation in Lead Halide Perovskite Nanocrystals.
ACS Nano. 2023 Feb 14;17(3):1979-1988. doi: 10.1021/acsnano.2c06727. Epub 2023 Jan 18.
9
Fröhlich interaction dominated by a single phonon mode in CsPbBr.
Nat Commun. 2021 Oct 6;12(1):5844. doi: 10.1038/s41467-021-26192-0.
10
Hot Excitons Cool in Metal Halide Perovskite Nanocrystals as Fast as CdSe Nanocrystals.
ACS Nano. 2024 Jan 9;18(1):1054-1062. doi: 10.1021/acsnano.3c10301. Epub 2023 Dec 18.

本文引用的文献

1
Inductive Effect of Lewis Acidic Dopants on the Band Levels of Perovskite for a Photocatalytic Reaction.
ACS Appl Mater Interfaces. 2022 Dec 7;14(48):53603-53614. doi: 10.1021/acsami.2c11936. Epub 2022 Nov 21.
2
Understanding Electron-Phonon Interactions in 3D Lead Halide Perovskites from the Stereochemical Expression of 6s Lone Pairs.
J Am Chem Soc. 2022 Jul 13;144(27):12247-12260. doi: 10.1021/jacs.2c03443. Epub 2022 Jun 29.
3
Routes for Metallization of Perovskite Solar Cells.
Materials (Basel). 2022 Mar 18;15(6):2254. doi: 10.3390/ma15062254.
4
Stabilizing perovskite-substrate interfaces for high-performance perovskite modules.
Science. 2021 Aug 20;373(6557):902-907. doi: 10.1126/science.abi6323.
5
Engineering Elastic Properties of Isostructural Molecular Perovskite Ferroelectrics via B-Site Substitution.
Small. 2021 Jun;17(22):e2006021. doi: 10.1002/smll.202006021. Epub 2021 Mar 14.
7
Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells.
Chem Soc Rev. 2021 Mar 1;50(4):2696-2736. doi: 10.1039/d0cs01316a.
8
Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction.
Science. 2020 Dec 11;370(6522):1300-1309. doi: 10.1126/science.abd4016.
9
Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites.
Nature. 2020 Apr;580(7803):360-366. doi: 10.1038/s41586-020-2184-1. Epub 2020 Apr 15.
10
Near-Infrared Emission from Tin-Lead (Sn-Pb) Alloyed Perovskite Quantum Dots by Sodium Doping.
Angew Chem Int Ed Engl. 2020 May 25;59(22):8421-8424. doi: 10.1002/anie.201916020. Epub 2020 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验