Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan.
Department of Food and Life Sciences, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-City 862-8652, Kumamoto, Japan.
Environ Sci Technol. 2024 Jan 9;58(1):488-497. doi: 10.1021/acs.est.3c06561. Epub 2023 Dec 22.
Per- and polyfluoroalkyl substances (PFAS) are widely employed anthropogenic fluorinated chemicals known to disrupt hepatic lipid metabolism by binding to human peroxisome proliferator-activated receptor alpha (PPARα). Therefore, screening for PFAS that bind to PPARα is of critical importance. Machine learning approaches are promising techniques for rapid screening of PFAS. However, traditional machine learning approaches lack interpretability, posing challenges in investigating the relationship between molecular descriptors and PPARα binding. In this study, we aimed to develop a novel, explainable machine learning approach to rapidly screen for PFAS that bind to PPARα. We calculated the PPARα-PFAS binding score and 206 molecular descriptors for PFAS. Through systematic and objective selection of important molecular descriptors, we developed a machine learning model with good predictive performance using only three descriptors. The molecular size () and electrostatic properties ( and ) are important for PPARα-PFAS binding. Alternative PFAS are considered safer than their legacy predecessors. However, we found that alternative PFAS with many carbon atoms and ether groups exhibited a higher affinity for PPARα. Therefore, confirming the toxicity of these alternative PFAS compounds with such characteristics through biological experiments is important.
全氟和多氟烷基物质(PFAS)是广泛使用的人为氟化化学品,已知通过与人类过氧化物酶体增殖物激活受体α(PPARα)结合来干扰肝脂代谢。因此,筛选与 PPARα 结合的 PFAS 至关重要。机器学习方法是快速筛选 PFAS 的有前途的技术。然而,传统的机器学习方法缺乏可解释性,在研究分子描述符与 PPARα 结合之间的关系方面带来了挑战。在本研究中,我们旨在开发一种新颖的、可解释的机器学习方法,以快速筛选与 PPARα 结合的 PFAS。我们计算了 PPARα-PFAS 结合评分和 206 个 PFAS 分子描述符。通过对重要分子描述符进行系统和客观的选择,我们仅使用三个描述符开发了具有良好预测性能的机器学习模型。分子大小()和静电特性(和)对于 PPARα-PFAS 结合很重要。替代 PFAS 被认为比其前身更安全。然而,我们发现具有许多碳原子和醚基团的替代 PFAS 对 PPARα 具有更高的亲和力。因此,通过生物实验确认具有这些特征的这些替代 PFAS 化合物的毒性很重要。