Suppr超能文献

系统分析艾尔酵母在发酵和再接种过程中的蛋白质动态变化。

Systematic profiling of ale yeast protein dynamics across fermentation and repitching.

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.

Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

G3 (Bethesda). 2024 Mar 6;14(3). doi: 10.1093/g3journal/jkad293.

Abstract

Studying the genetic and molecular characteristics of brewing yeast strains is crucial for understanding their domestication history and adaptations accumulated over time in fermentation environments, and for guiding optimizations to the brewing process itself. Saccharomyces cerevisiae (brewing yeast) is among the most profiled organisms on the planet, yet the temporal molecular changes that underlie industrial fermentation and beer brewing remain understudied. Here, we characterized the genomic makeup of a Saccharomyces cerevisiae ale yeast widely used in the production of Hefeweizen beers, and applied shotgun mass spectrometry to systematically measure the proteomic changes throughout 2 fermentation cycles which were separated by 14 rounds of serial repitching. The resulting brewing yeast proteomics resource includes 64,740 protein abundance measurements. We found that this strain possesses typical genetic characteristics of Saccharomyces cerevisiae ale strains and displayed progressive shifts in molecular processes during fermentation based on protein abundance changes. We observed protein abundance differences between early fermentation batches compared to those separated by 14 rounds of serial repitching. The observed abundance differences occurred mainly in proteins involved in the metabolism of ergosterol and isobutyraldehyde. Our systematic profiling serves as a starting point for deeper characterization of how the yeast proteome changes during commercial fermentations and additionally serves as a resource to guide fermentation protocols, strain handling, and engineering practices in commercial brewing and fermentation environments. Finally, we created a web interface (https://brewing-yeast-proteomics.ccbb.utexas.edu/) to serve as a valuable resource for yeast geneticists, brewers, and biochemists to provide insights into the global trends underlying commercial beer production.

摘要

研究酿造酵母菌株的遗传和分子特征对于理解它们在发酵环境中的驯化历史和随时间积累的适应至关重要,并且对于指导酿造过程本身的优化也很重要。酿酒酵母(酿造酵母)是地球上研究最多的生物之一,但支撑工业发酵和啤酒酿造的时间分子变化仍未得到充分研究。在这里,我们对一种广泛用于生产小麦啤酒的酿酒酵母艾尔酵母的基因组结构进行了表征,并应用鸟枪法质谱技术系统地测量了 2 个发酵周期(由 14 轮连续接种分开)中的蛋白质组变化。由此产生的酿造酵母蛋白质组学资源包括 64740 个蛋白质丰度测量值。我们发现,该菌株具有典型的酿酒酵母艾尔菌株的遗传特征,并根据蛋白质丰度的变化显示出在发酵过程中分子过程的逐步转变。我们观察到早期发酵批次与经过 14 轮连续接种分开的批次之间的蛋白质丰度差异。观察到的丰度差异主要发生在与麦角固醇和异丁醛代谢有关的蛋白质中。我们的系统分析为更深入地研究商业发酵过程中酵母蛋白质组的变化提供了起点,并为指导发酵方案、菌株处理和商业酿造和发酵环境中的工程实践提供了资源。最后,我们创建了一个网络界面(https://brewing-yeast-proteomics.ccbb.utexas.edu/),作为酵母遗传学家、酿酒师和生化学家的宝贵资源,为深入了解商业啤酒生产背后的全球趋势提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eea0/10917522/8332e82703ce/jkad293f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验