Zeng Chunyan, Xia Shiyan, Wang Zhifeng, Wan Xiangkui
Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China.
Department of Digital Media Technology, Central China Normal University, Wuhan 430079, China.
Entropy (Basel). 2023 Nov 24;25(12):1579. doi: 10.3390/e25121579.
Deep Unfolding Networks (DUNs) serve as a predominant approach for Compressed Sensing (CS) reconstruction algorithms by harnessing optimization. However, a notable constraint within the DUN framework is the restriction to single-channel inputs and outputs at each stage during gradient descent computations. This constraint compels the feature maps of the proximal mapping module to undergo multi-channel to single-channel dimensionality reduction, resulting in limited feature characterization capabilities. Furthermore, most prevalent reconstruction networks rely on single-scale structures, neglecting the extraction of features from different scales, thereby impeding the overall reconstruction network's performance. To address these limitations, this paper introduces a novel CS reconstruction network termed the Multi-channel and Multi-scale Unfolding Network (MMU-Net). MMU-Net embraces a multi-channel approach, featuring the incorporation of Adap-SKConv with an attention mechanism to facilitate the exchange of information between gradient terms and enhance the feature map's characterization capacity. Moreover, a Multi-scale Block is introduced to extract multi-scale features, bolstering the network's ability to characterize and reconstruct the images. Our study extensively evaluates MMU-Net's performance across multiple benchmark datasets, including Urban100, Set11, BSD68, and the UC Merced Land Use Dataset, encompassing both natural and remote sensing images. The results of our study underscore the superior performance of MMU-Net in comparison to existing state-of-the-art CS methods.
深度展开网络(DUNs)通过利用优化方法,成为压缩感知(CS)重建算法的一种主要方法。然而,DUN框架内一个显著的限制是在梯度下降计算的每个阶段都限制为单通道输入和输出。这种限制迫使近端映射模块的特征图进行多通道到单通道的降维,导致特征表征能力有限。此外,大多数流行的重建网络依赖单尺度结构,忽略了从不同尺度提取特征,从而阻碍了整体重建网络的性能。为了解决这些限制,本文引入了一种新颖的CS重建网络,称为多通道多尺度展开网络(MMU-Net)。MMU-Net采用多通道方法,其特点是结合了带有注意力机制的Adap-SKConv,以促进梯度项之间的信息交换并增强特征图的表征能力。此外,还引入了一个多尺度块来提取多尺度特征,增强网络对图像进行表征和重建的能力。我们的研究在多个基准数据集上广泛评估了MMU-Net的性能,包括Urban100、Set11、BSD68和加州大学默塞德分校土地利用数据集,涵盖了自然图像和遥感图像。我们的研究结果强调了MMU-Net与现有最先进的CS方法相比具有卓越的性能。