Suppr超能文献

单细胞转录组测序方法比较:鼠与人。

Comparison of Single Cell Transcriptome Sequencing Methods: Of Mice and Men.

机构信息

Department of Cell Biology, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands.

Genomics Core Facility, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands.

出版信息

Genes (Basel). 2023 Dec 16;14(12):2226. doi: 10.3390/genes14122226.

Abstract

Single cell RNAseq has been a big leap in many areas of biology. Rather than investigating gene expression on a whole organism level, this technology enables scientists to get a detailed look at rare single cells or within their cell population of interest. The field is growing, and many new methods appear each year. We compared methods utilized in our core facility: Smart-seq3, PlexWell, FLASH-seq, VASA-seq, SORT-seq, 10X, Evercode, and HIVE. We characterized the equipment requirements for each method. We evaluated the performances of these methods based on detected features, transcriptome diversity, mitochondrial RNA abundance and multiplets, among others and benchmarked them against bulk RNA sequencing. Here, we show that bulk transcriptome detects more unique transcripts than any single cell method. While most methods are comparable in many regards, FLASH-seq and VASA-seq yielded the best metrics, e.g., in number of features. If no equipment for automation is available or many cells are desired, then HIVE or 10X yield good results. In general, more recently developed methods perform better. This also leads to the conclusion that older methods should be phased out, and that the development of single cell RNAseq methods is still progressing considerably.

摘要

单细胞 RNA 测序在生物学的许多领域都是一个重大突破。这项技术使科学家能够深入研究罕见的单细胞或其感兴趣的细胞群体,而不是在整个生物体水平上研究基因表达。该领域正在不断发展,每年都会出现许多新方法。我们比较了我们核心实验室使用的方法:Smart-seq3、PlexWell、FLASH-seq、VASA-seq、SORT-seq、10X、Evercode 和 HIVE。我们描述了每种方法的设备要求。我们根据检测到的特征、转录组多样性、线粒体 RNA 丰度和多联体等评估了这些方法的性能,并将它们与批量 RNA 测序进行了基准测试。在这里,我们表明批量转录组检测到的独特转录本比任何单细胞方法都多。虽然大多数方法在许多方面都具有可比性,但 FLASH-seq 和 VASA-seq 产生了最佳指标,例如,在特征数量方面。如果没有自动化设备或需要大量细胞,则 HIVE 或 10X 会产生良好的结果。一般来说,更新的方法表现更好。这也得出了一个结论,即较旧的方法应该逐步淘汰,单细胞 RNA 测序方法的发展仍在取得相当大的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48b/10743076/1c26416867a4/genes-14-02226-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验