Khaghani Ali, Ivanov Atanas, Cheng Kai
Department of Mechanical and Aerospace Engineering (MAE), Brunel University London, London UB8 3PH, UK.
Micromachines (Basel). 2023 Dec 12;14(12):2228. doi: 10.3390/mi14122228.
This study delves into the intricacies of ultraprecision machining, particularly in the context of machining optical freeform surfaces using Diamond Turning Machines (DTMs). It underscores the dynamic relationship between toolpath generation, hydrostatic bearing in DTMs, and the machining process. Central to this research is the innovative introduction of Metal Matrix Composites (MMCs) to replace the traditional materials used in designing linear bearings. This strategic substitution aims to dynamically enhance both the accuracy and the quality of the machined optical freeform surfaces. The study employs simulation-based analysis using ADAMS to investigate the interfacial cutting forces at the tooltip and workpiece surface and their impacts on the machining process. Through simulations of STS mode ultraprecision machining, the interfacial cutting forces and their relationship with changes in surface curvatures are examined. The results demonstrate that the use of MMC material leads to a significant reduction in toolpath pressure, highlighting the potential benefits of employing lightweight materials in improving the dynamic performance of the system. Additionally, the analysis of slideway joints reveals the direct influence of interfacial cutting forces on the linear slideways, emphasising the importance of understanding and controlling these forces for achieving higher-precision positioning and motion control. The comparative analysis between steel and MMC materials provides valuable insights into the effects of material properties on the system's dynamic performance. These findings contribute to the existing body of knowledge and suggest a potential shift towards more advanced precision forms, possibly extending to pico-engineering in future systems. Ultimately, this research establishes a new standard in the field, emphasising the importance of system dynamics and interfacial forces in the evolution of precision manufacturing technologies.
本研究深入探讨了超精密加工的复杂性,特别是在使用金刚石车床(DTMs)加工光学自由曲面的背景下。它强调了刀具路径生成、DTMs中的静压轴承与加工过程之间的动态关系。本研究的核心是创新性地引入金属基复合材料(MMCs)来取代设计直线轴承时使用的传统材料。这种策略性替代旨在动态提高加工光学自由曲面的精度和质量。该研究采用基于ADAMS的仿真分析来研究刀尖与工件表面之间的界面切削力及其对加工过程的影响。通过对STS模式超精密加工的仿真,研究了界面切削力及其与表面曲率变化的关系。结果表明,使用MMC材料可显著降低刀具路径压力,突出了采用轻质材料改善系统动态性能的潜在益处。此外,对导轨接头的分析揭示了界面切削力对直线导轨的直接影响,强调了理解和控制这些力对于实现更高精度定位和运动控制的重要性。钢和MMC材料之间的对比分析为材料特性对系统动态性能的影响提供了有价值的见解。这些发现丰富了现有知识体系,并表明可能朝着更先进的精密形式转变,未来系统中可能会扩展到皮米工程。最终,本研究在该领域建立了新的标准,强调了系统动力学和界面力在精密制造技术发展中的重要性。