Suppr超能文献

一种由多变量分析驱动的工作流程,用于处理小型近红外数据中的不确定性。

A Multivariate Analysis-Driven Workflow to Tackle Uncertainties in Miniaturized NIR Data.

作者信息

Gorla Giulia, Taborelli Paolo, Giussani Barbara

机构信息

Department of Science and High Technology, University of Insubria, Via Valleggio 9, 22100 Como, Italy.

出版信息

Molecules. 2023 Dec 7;28(24):7999. doi: 10.3390/molecules28247999.

Abstract

This study focuses on exploring and understanding measurement errors in analytical procedures involving miniaturized near-infrared instruments. Despite recent spreading in different application fields, there remains a lack of emphasis on the accuracy and reliability of these devices, which is a critical concern for accurate scientific outcomes. The study investigates multivariate measurement errors, revealing their complex nature and the influence that preprocessing techniques can have. The research introduces a possible workflow for practical error analysis in experiments involving diverse samples and instruments. Notably, it investigates how sample characteristics impact errors in the case of solid pills and tablets, typical pharmaceutical samples. ASCA was used for understanding critical instrumental factors and the potential and limitations of the method in the current application were discussed. The joint interpretation of multivariate error matrices and their resume through image histograms and K index are discussed in order to evaluate the impact of common preprocessing methods and to assess their influence on signals.

摘要

本研究专注于探索和理解涉及小型近红外仪器的分析程序中的测量误差。尽管近年来这些仪器在不同应用领域得到了广泛应用,但对其准确性和可靠性仍缺乏足够的重视,而这对于获得准确的科学结果至关重要。该研究调查了多变量测量误差,揭示了其复杂的性质以及预处理技术可能产生的影响。该研究介绍了一种在涉及不同样品和仪器的实验中进行实际误差分析的可能工作流程。值得注意的是,该研究调查了在固体药丸和片剂(典型的药物样品)的情况下,样品特性如何影响误差。使用主成分分析来理解关键的仪器因素,并讨论了该方法在当前应用中的潜力和局限性。为了评估常见预处理方法的影响并评估其对信号的影响,讨论了多变量误差矩阵的联合解释及其通过图像直方图和K指数的恢复情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f948/10745448/80b1213bfff7/molecules-28-07999-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验