Bertinetto Carlo, Engel Jasper, Jansen Jeroen
Department of Analytical Chemistry, Institute of Molecular Materials, Radboud University, the Netherlands.
Biometris, Wageningen UR, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.
Anal Chim Acta X. 2020 Oct 6;6:100061. doi: 10.1016/j.acax.2020.100061. eCollection 2020 Nov.
When analyzing experimental chemical data, it is often necessary to incorporate the structure of the study design into the chemometric/statistical models to effectively address the research questions of interest. ANOVA-Simultaneous Component Analysis (ASCA) is one of the most prominent methods to include such information in the quantitative analysis of multivariate data, especially when the number of variables is large. This tutorial review intends to explain in a simple way how ASCA works, how it is operated and how to correctly interpret ASCA results, with approachable mathematical and visual descriptions. Two examples are given: the first, a simulated chemical reaction, serves to illustrate the ASCA steps and the second, from a real chemical ecology data set, the interpretation of results. An overview of methods closely related to ASCA is also provided, pointing out their differences and scope, to give a wide-ranging picture of the available options to build multivariate models that take experimental design into account.
在分析实验化学数据时,通常需要将研究设计的结构纳入化学计量学/统计模型中,以便有效地解决感兴趣的研究问题。方差分析 - 同步成分分析(ASCA)是在多变量数据定量分析中纳入此类信息的最突出方法之一,尤其是当变量数量很大时。本教程综述旨在以简单的方式解释ASCA的工作原理、操作方法以及如何正确解释ASCA结果,并给出易于理解的数学和可视化描述。给出了两个例子:第一个是模拟化学反应,用于说明ASCA步骤;第二个来自真实的化学生态学数据集,用于结果解释。还提供了与ASCA密切相关的方法概述,指出它们的差异和适用范围,以便全面了解构建考虑实验设计的多变量模型的可用选项。