Suppr超能文献

简化小麦品质评估:使用近红外光谱和方差分析同时成分分析研究区域和年度效应

Simplifying Wheat Quality Assessment: Using Near-Infrared Spectroscopy and Analysis of Variance Simultaneous Component Analysis to Study Regional and Annual Effects.

作者信息

Freitag Stephan, Anlanger Maximilian, Lippl Maximilian, Mechtler Klemens, Reiter Elisabeth, Grausgruber Heinrich, Krska Rudolf

机构信息

Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, BOKU University, Konrad-Lorenz-Str. 20, 3430 Tulln an der Donau, Austria.

Institute for Animal Nutrition and Feed, Austrian Agency for Health and Food Safety GmbH, Spargelfeldstr. 192, 1220 Vienna, Austria.

出版信息

ACS Meas Sci Au. 2024 Oct 4;4(6):695-701. doi: 10.1021/acsmeasuresciau.4c00044. eCollection 2024 Dec 18.

Abstract

Assessing the quality of wheat, one of humanity's most important crops, in a straightforward manner, is essential. In this study, analysis of variance (ANOVA) simultaneous component analysis (ASCA) paired with near-infrared spectroscopy (NIRS) was used as an easy-to-implement and environmentally friendly tool for this purpose. The capabilities of combining NIRS with ASCA were demonstrated by studying the effects of sampling site and year on the quality of 180 Austrian wheat samples across four sites over 3 years. It was found that the year, sample site, and their combination significantly ( < 0.001) affect the NIR spectra of wheat. NIR spectral preprocessing tools, usually employed in chemometric workflows, notably influence the results obtained by ASCA, particularly in terms of the variance attributed to annual and regional effects. The influence of the year was identified as the dominant factor, followed by region and the combined effect of year and sampling site. Interpretation of the loading plots obtained by ASCA demonstrates that wheat components such as proteins, carbohydrates, moisture, or fat contribute to annual and regional differences. Additionally, the protein, starch, moisture, fat, fiber, and ash contents of wheat samples obtained using a NIR-based calibration were found to be significantly influenced by year, sampling site, or their combination using ANOVA. This study shows that the combination of ASCA with NIRS simplifies NIR-based quality assessment of wheat without the need for time- and chemical-consuming calibration development.

摘要

以一种直接的方式评估小麦(人类最重要的作物之一)的质量至关重要。在本研究中,方差分析(ANOVA)同步成分分析(ASCA)与近红外光谱(NIRS)相结合被用作一种易于实施且环保的工具来实现这一目的。通过研究采样地点和年份对3年中4个地点的180个奥地利小麦样本质量的影响,证明了将NIRS与ASCA相结合的能力。研究发现,年份、样本地点及其组合对小麦的近红外光谱有显著影响(<0.001)。化学计量学工作流程中常用的近红外光谱预处理工具,对ASCA获得的结果有显著影响,特别是在归因于年度和区域效应的方差方面。年份的影响被确定为主要因素,其次是区域以及年份和采样地点的综合效应。对ASCA获得的载荷图的解释表明,蛋白质、碳水化合物、水分或脂肪等小麦成分导致了年度和区域差异。此外,使用基于近红外的校准获得的小麦样本的蛋白质、淀粉、水分、脂肪、纤维和灰分含量,通过方差分析发现受年份、采样地点或其组合的显著影响。这项研究表明,ASCA与NIRS的结合简化了基于近红外的小麦质量评估,而无需进行耗时且耗化学试剂的校准开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c56/11659997/82f563e9e3f6/tg4c00044_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验