Rigaut Clément, Deruyver Laura, Niesen Maxime, Vander Ghinst Marc, Goole Jonathan, Lambert Pierre, Haut Benoit
Transfers Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium.
Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium.
Pharmaceutics. 2023 Nov 23;15(12):2661. doi: 10.3390/pharmaceutics15122661.
Nose-to-brain delivery is a promising way to improve the treatment of central nervous system disorders, as it allows the bypassing of the blood-brain barrier. However, it is still largely unknown how the anatomy of the nose can influence the treatment outcome. In this work, we used 3D printing to produce nasal replicas based on 11 different CT scans presenting various anatomical features. Then, for each anatomy and using the Design of Experiments methodology, we characterised the amount of a powder deposited in the olfactory region of the replica as a function of multiple parameters (choice of the nostril, device, orientation angle, and the presence or not of a concomitant inspiration flow). We found that, for each anatomy, the maximum amount of powder that can be deposited in the olfactory region is directly proportional to the total area of this region. More precisely, the results show that, whatever the instillation strategy, if the total area of the olfactory region is below 1500 mm, no more than 25% of an instilled powder can reach this region. On the other hand, if the total area of the olfactory region is above 3000 mm, the deposition efficiency reaches 50% with the optimal choice of parameters, whatever the other anatomical characteristics of the nasal cavity. Finally, if the relative difference between the areas of the two sides of the internal nasal valve is larger than 20%, it becomes important to carefully choose the side of instillation. This work, by predicting the amount of powder reaching the olfactory region, provides a tool to evaluate the adequacy of nose-to-brain treatment for a given patient. While the conclusions should be confirmed via in vivo studies, it is a first step towards personalised treatment of neurological pathologies.
鼻-脑给药是改善中枢神经系统疾病治疗的一种有前景的方式,因为它能够绕过血脑屏障。然而,鼻子的解剖结构如何影响治疗效果在很大程度上仍然未知。在这项工作中,我们使用3D打印技术,基于呈现各种解剖特征的11种不同CT扫描结果制作了鼻腔复制品。然后,针对每种解剖结构,并使用实验设计方法,我们将复制品嗅觉区域沉积的粉末量表征为多个参数(鼻孔选择、装置、定向角度以及是否存在伴随的吸气气流)的函数。我们发现,对于每种解剖结构,能够沉积在嗅觉区域的最大粉末量与该区域的总面积成正比。更确切地说,结果表明,无论滴注策略如何,如果嗅觉区域的总面积低于1500平方毫米,不超过25%的滴注粉末能够到达该区域。另一方面,如果嗅觉区域的总面积高于3000平方毫米,无论鼻腔的其他解剖特征如何,通过参数的最佳选择,沉积效率可达50%。最后,如果鼻内瓣膜两侧面积的相对差异大于20%,仔细选择滴注侧就变得很重要。这项工作通过预测到达嗅觉区域的粉末量,提供了一种工具来评估针对特定患者的鼻-脑治疗的适宜性。虽然这些结论应通过体内研究来证实,但这是迈向神经病理学个性化治疗的第一步。