Suppr超能文献

一种用于图像恢复的高效多尺度空间重排MLP架构

An Efficient Multiscale Spatial Rearrangement MLP Architecture for Image Restoration.

作者信息

Hua Xia, Li Zezheng, Hong Hanyu

出版信息

IEEE Trans Image Process. 2024;33:423-438. doi: 10.1109/TIP.2023.3341700. Epub 2023 Dec 29.

Abstract

The effective use of long-range information can yield improved network performance, which is very important for image restoration. Although local window-based models have linear complexity and can be feasibly applied to process high-resolution images, a single-scale window has a limited receptive field and is less efficient for encoding long-range context information. To address this issue, this paper presents a single-stage multiscale spatial rearrangement multilayer perceptron (MSSR-MLP) architecture that can obtain information at different scales within a local window. Specifically, we propose a simple and efficient spatial rearrangement module (SRM) that moves information outside the local window to the inside of the local window so that long-range dependencies can be modeled using only a window-based fully connected (FC) layer. The SRM can extend the local receptive field of a window-based FC layer without introducing additional parameters and FLOPs. Utilizing several spatial rearrangement modules with different step sizes, we design an efficient multiscale spatial rearrangement MLP architecture for image restoration. This design aggregates multiscale information to achieve improved restoration quality while maintaining a low computational cost. Extensive experiments conducted on several image restoration tasks demonstrate the efficiency and effectiveness of our method. For example, it requires only ~4.3% of the FLOPs needed by SwinIR for Gaussian gray image denoising, ~13.9% of the FLOPs needed by C PNet for single-image dehazing and ~18.9% of the FLOPs needed by MAXIM for single-image motion deblurring but achieves better performance on each of these restoration tasks.

摘要

有效利用远程信息可以提高网络性能,这对于图像恢复非常重要。尽管基于局部窗口的模型具有线性复杂度,并且可以 feasibly 应用于处理高分辨率图像,但单尺度窗口的感受野有限,在编码远程上下文信息方面效率较低。为了解决这个问题,本文提出了一种单阶段多尺度空间重排多层感知器(MSSR-MLP)架构,该架构可以在局部窗口内获取不同尺度的信息。具体来说,我们提出了一种简单高效的空间重排模块(SRM),它将局部窗口外的信息移动到局部窗口内,以便仅使用基于窗口的全连接(FC)层来建模远程依赖关系。SRM 可以扩展基于窗口的 FC 层的局部感受野,而无需引入额外的参数和 FLOPs。利用几个具有不同步长的空间重排模块,我们设计了一种用于图像恢复的高效多尺度空间重排 MLP 架构。这种设计聚合多尺度信息以提高恢复质量,同时保持较低的计算成本。在几个图像恢复任务上进行的大量实验证明了我们方法的效率和有效性。例如,对于高斯灰度图像去噪,它只需要 SwinIR 所需 FLOPs 的约 4.3%,对于单图像去雾,只需要 C PNet 所需 FLOPs 的约 13.9%,对于单图像运动去模糊,只需要 MAXIM 所需 FLOPs 的约 18.9%,但在这些恢复任务中的每一个上都取得了更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验