Suppr超能文献

植物叶片发育的分子机制概述:一项系统综述

Overview of molecular mechanisms of plant leaf development: a systematic review.

作者信息

Lv Zhuo, Zhao Wanqi, Kong Shuxin, Li Long, Lin Shuyan

机构信息

Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.

Bamboo Research Institute, Nanjing Forestry University, Nanjing, China.

出版信息

Front Plant Sci. 2023 Dec 7;14:1293424. doi: 10.3389/fpls.2023.1293424. eCollection 2023.

Abstract

Leaf growth initiates in the peripheral region of the meristem at the apex of the stem, eventually forming flat structures. Leaves are pivotal organs in plants, serving as the primary sites for photosynthesis, respiration, and transpiration. Their development is intricately governed by complex regulatory networks. Leaf development encompasses five processes: the leaf primordium initiation, the leaf polarity establishment, leaf size expansion, shaping of leaf, and leaf senescence. The leaf primordia starts from the side of the growth cone at the apex of the stem. Under the precise regulation of a series of genes, the leaf primordia establishes adaxial-abaxial axes, proximal-distal axes and medio-lateral axes polarity, guides the primordia cells to divide and differentiate in a specific direction, and finally develops into leaves of a certain shape and size. Leaf senescence is a kind of programmed cell death that occurs in plants, and as it is the last stage of leaf development. Each of these processes is meticulously coordinated through the intricate interplay among transcriptional regulatory factors, microRNAs, and plant hormones. This review is dedicated to examining the regulatory influences of major regulatory factors and plant hormones on these five developmental aspects of leaves.

摘要

叶片生长始于茎尖分生组织的外围区域,最终形成扁平结构。叶片是植物的关键器官,是光合作用、呼吸作用和蒸腾作用的主要场所。其发育受复杂调控网络的精细控制。叶片发育包括五个过程:叶原基起始、叶片极性建立、叶片大小扩展、叶片形态塑造和叶片衰老。叶原基从茎尖生长锥的侧面开始。在一系列基因的精确调控下,叶原基建立近轴-远轴、近端-远端和中侧轴极性,引导原基细胞沿特定方向分裂和分化,最终发育成特定形状和大小的叶片。叶片衰老是植物中发生的一种程序性细胞死亡,是叶片发育的最后阶段。这些过程中的每一个都通过转录调控因子、微小RNA和植物激素之间的复杂相互作用进行精心协调。本综述致力于研究主要调控因子和植物激素对叶片这五个发育方面的调控影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d0b/10749370/16b478272a75/fpls-14-1293424-g001.jpg

相似文献

1
Overview of molecular mechanisms of plant leaf development: a systematic review.
Front Plant Sci. 2023 Dec 7;14:1293424. doi: 10.3389/fpls.2023.1293424. eCollection 2023.
4
Establishment of polarity in lateral organs of plants.
Curr Biol. 2001 Aug 21;11(16):1251-60. doi: 10.1016/s0960-9822(01)00392-x.
5
Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development.
Plant Cell Physiol. 2012 Jul;53(7):1180-94. doi: 10.1093/pcp/pcs074. Epub 2012 May 21.
6
Auxin depletion from leaf primordia contributes to organ patterning.
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18769-74. doi: 10.1073/pnas.1421878112. Epub 2014 Dec 15.
7
Auxin polar transport flanking incipient primordium initiates leaf adaxial-abaxial polarity patterning.
J Integr Plant Biol. 2018 Jun;60(6):455-464. doi: 10.1111/jipb.12640. Epub 2018 May 8.
8
Specification of adaxial cell fate during maize leaf development.
Development. 2004 Sep;131(18):4533-44. doi: 10.1242/dev.01328.
9
The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves.
Plant Cell. 2008 Aug;20(8):2073-87. doi: 10.1105/tpc.108.059709. Epub 2008 Aug 29.
10
Adaxial-abaxial polarity: the developmental basis of leaf shape diversity.
Genesis. 2014 Jan;52(1):1-18. doi: 10.1002/dvg.22728. Epub 2013 Dec 23.

引用本文的文献

1
3
Transcriptome and selected metabolite analyses reveal points of sugar metabolism in the developing leaves of kiwifruit.
Front Plant Sci. 2025 Jul 11;16:1618801. doi: 10.3389/fpls.2025.1618801. eCollection 2025.
4
Research Progress of CLE and Its Prospects in Woody Plants.
Plants (Basel). 2025 May 9;14(10):1424. doi: 10.3390/plants14101424.
6
Integration of digital phenotyping, GWAS, and transcriptomic analysis revealed a key gene for bud size in tea plant ().
Hortic Res. 2025 Feb 20;12(6):uhaf051. doi: 10.1093/hr/uhaf051. eCollection 2025 Jun.
8
LIGHt-based rapid detection of starch in tobacco leaves by smartphone sensing.
Sci Rep. 2025 Feb 25;15(1):6689. doi: 10.1038/s41598-025-90569-0.
9
Positive impacts of typical desert photovoltaic scenarios in China on the growth and physiology of sand-adapted plants.
Front Plant Sci. 2025 Jan 20;15:1515896. doi: 10.3389/fpls.2024.1515896. eCollection 2024.

本文引用的文献

1
Leaf senescence: progression, regulation, and application.
Mol Hortic. 2021 Jun 16;1(1):5. doi: 10.1186/s43897-021-00006-9.
2
A Wox3-patterning module organizes planar growth in grass leaves and ligules.
Nat Plants. 2023 May;9(5):720-732. doi: 10.1038/s41477-023-01405-0. Epub 2023 May 4.
3
An antisense intragenic lncRNA SEAIRa mediates transcriptional and epigenetic repression of in .
Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2216062120. doi: 10.1073/pnas.2216062120. Epub 2023 Mar 1.
8
Cytokinins regulate rice lamina joint development and leaf angle.
Plant Physiol. 2023 Jan 2;191(1):56-69. doi: 10.1093/plphys/kiac401.
9
The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity.
Curr Biol. 2022 Sep 12;32(17):3773-3784.e5. doi: 10.1016/j.cub.2022.08.020. Epub 2022 Aug 26.
10
The APC/CTAD1-WIDE LEAF 1-NARROW LEAF 1 pathway controls leaf width in rice.
Plant Cell. 2022 Oct 27;34(11):4313-4328. doi: 10.1093/plcell/koac232.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验