Department of Radiology, Peking University First Hospital, Beijing, China.
School of Basic Medical Sciences, Capital Medical University, Beijing, China.
J Appl Clin Med Phys. 2024 Apr;25(4):e14244. doi: 10.1002/acm2.14244. Epub 2023 Dec 26.
To develop radiomics models based on automatic segmentation of the pretreatment apparent diffusion coefficient (ADC) maps for predicting the biochemical recurrence (BCR) of advanced prostate cancer (PCa).
A total of 100 cases with pathologically confirmed PCa were retrospectively included in this study. These cases were randomly divided into training (n = 70) and test (n = 30) datasets. Two predictive models were constructed based on the combination of age, prostate specific antigen (PSA) level, Gleason score, and clinical staging before therapy and the prostate area (Model_1) or PCa area (Model_2). Another two predictive models were constructed based on only prostate area (Model_3) or PCa area (Model_4). The area under the receiver operating characteristic curve (ROC AUC) and precision-recall (PR) curve analysis were used to analyze the models' performance.
Sixty-five patients without BCR (BCR-) and 35 patients with BCR (BCR+) were confirmed. The age, PSA, volume, diameter and ADC value of the prostate and PCa were not significantly different between the BCR- and BCR+ groups or between the training and test datasets (all p > 0.05). The AUCs were 0.637 (95% CI: 0.434-0.838), 0.841 (95% CI: 0.695-0.940), 0.840 (95% CI: 0.698-0.983), and 0.808 (95% CI: 0.627-0.988) for Model_1 to Model_4 in the test dataset without significant difference. The 95% bootstrap confidence intervals for the areas under the PR curve of the four models were not statistically different.
The radiomics models based on automatically segmented prostate and PCa areas on the pretreatment ADC maps developed in our study can be promising in predicting BCR of advanced PCa.
基于预处理表观扩散系数(ADC)图的自动分割,开发放射组学模型,以预测晚期前列腺癌(PCa)的生化复发(BCR)。
本研究共纳入 100 例经病理证实的 PCa 患者,回顾性分析。这些病例被随机分为训练(n=70)和测试(n=30)数据集。根据治疗前的年龄、前列腺特异抗原(PSA)水平、Gleason 评分和临床分期以及前列腺区域(模型 1)或 PCa 区域(模型 2),构建了两种预测模型。还根据仅前列腺区域(模型 3)或 PCa 区域(模型 4)构建了另外两种预测模型。使用受试者工作特征曲线(ROC AUC)和精度-召回(PR)曲线分析来分析模型的性能。
确定 65 例无生化复发(BCR-)和 35 例有生化复发(BCR+)的患者。BCR-和 BCR+组或训练和测试数据集之间,前列腺和 PCa 的年龄、PSA、体积、直径和 ADC 值均无显著差异(均 P>0.05)。模型 1 至模型 4 在测试数据集中的 AUC 分别为 0.637(95%CI:0.434-0.838)、0.841(95%CI:0.695-0.940)、0.840(95%CI:0.698-0.983)和 0.808(95%CI:0.627-0.988),差异无统计学意义。四个模型的 PR 曲线下面积的 95% 自举置信区间无统计学差异。
本研究中基于预处理 ADC 图上自动分割前列腺和 PCa 区域的放射组学模型,有望预测晚期 PCa 的 BCR。