Suppr超能文献

基于表观扩散系数图的放射组学模型在根治性前列腺切除术前预测高级别前列腺癌的应用:与术前活检的比较。

Radiomics Models Based on Apparent Diffusion Coefficient Maps for the Prediction of High-Grade Prostate Cancer at Radical Prostatectomy: Comparison With Preoperative Biopsy.

机构信息

Department of Radiology, Peking University First Hospital, Beijing, China.

Beijing Smart Tree Medical Technology Co. Ltd. Beijing, China.

出版信息

J Magn Reson Imaging. 2021 Dec;54(6):1892-1901. doi: 10.1002/jmri.27565. Epub 2021 Mar 8.

Abstract

BACKGROUND

It is feasible to use magnetic resonance (MR)-based radiomics to distinguish high-grade from low-grade prostate cancer (PCa), but radiomics model performance based on fully automated segmentation remains unknown.

PURPOSE

To develop and test radiomics models based on manually or automatically gained masks on apparent diffusion coefficient (ADC) maps to predict high-grade (Gleason score ≥ 4 + 3) PCa at radical prostatectomy (RP).

STUDY TYPE

Retrospective.

POPULATION

A total of 176 patients (94 high-grade PCa and 82 low-grade PCa) with complete RP, preoperative biopsy, and multiparametric magnetic resonance imaging (mpMRI) were retrospectively recruited and randomly divided into training (N = 123) and test (N = 53) cohorts.

FIELD STRENGTH/SEQUENCE: Using a 3.0-T MR scanner, ADC maps were calculated from diffusion-weighted imaging (b values = 0, 1400 s/mm , echo planar imaging).

ASSESSMENT

Two radiologists segmented the whole prostate gland and the most index prostate lesion. Automatic segmentation of the prostate and the lesion were performed. Four radiomics models were constructed using four masks (manual/automatic prostate gland/PCa lesion segmentation). According to the standard reference of the RP histopathologic assessment, the performance of each radiomics models was compared with that of biopsy and Prostate Imaging Reporting and Data System version 2.1 (PI-RADS) assessment.

STATISTICAL TESTS

A receiver operating characteristic curve analysis was employed to estimate the area under the curve (AUC) values of the models. The AUCs of the four models, biopsy, and PI-RADS assessment were compared using the DeLong test.

RESULTS

The four radiomics models yielded AUCs of 0.710, 0.731, 0.726, and 0.709 in the test cohort, respectively; biopsy and PI-RADS assessment yielded AUCs of 0.793 and 0.680, respectively. No significant differences were found among model, biopsy, and PI-RADS assessment comparisons (P = 0.132-0.988).

DATA CONCLUSION

To distinguish high-grade from low-grade PCa, radiomics models based on automatic segmentation on ADC maps exhibit approximately the same diagnostic efficacy as manual segmentation and biopsy, highlighting the possibility of a fully automatic workflow combining automated segmentation with radiomics analysis.

EVIDENCE LEVEL

4 TECHNICAL EFFICACY: Stage 2.

摘要

背景

使用基于磁共振(MR)的放射组学区分高级别和低级别前列腺癌(PCa)是可行的,但基于全自动分割的放射组学模型性能仍不清楚。

目的

开发和测试基于表观扩散系数(ADC)图手动或自动获得的掩模的放射组学模型,以预测根治性前列腺切除术(RP)中的高级别(Gleason 评分≥4+3)PCa。

研究类型

回顾性。

人群

共纳入 176 例接受 RP、术前活检和多参数磁共振成像(mpMRI)的完整 PCa 患者(94 例高级别 PCa 和 82 例低级别 PCa),并进行回顾性分析。将患者随机分为训练队列(N=123)和测试队列(N=53)。

磁场强度/序列:使用 3.0-T MR 扫描仪,从扩散加权成像(b 值=0、1400 s/mm 2 、回波平面成像)计算 ADC 图。

评估

两名放射科医生对整个前列腺和最索引前列腺病变进行手动分割。对前列腺和病变进行自动分割。使用四个掩模(手动/自动前列腺/PCa 病变分割)构建了四个放射组学模型。根据 RP 组织病理学评估的标准参考,比较了每个放射组学模型的性能与活检和前列腺成像报告和数据系统 2.1 版(PI-RADS)评估的性能。

统计学检验

采用受试者工作特征曲线分析估计模型的曲线下面积(AUC)值。使用 DeLong 检验比较了四个模型、活检和 PI-RADS 评估的 AUC 值。

结果

在测试队列中,四个放射组学模型的 AUC 值分别为 0.710、0.731、0.726 和 0.709;活检和 PI-RADS 评估的 AUC 值分别为 0.793 和 0.680。模型、活检和 PI-RADS 评估之间的比较无显著差异(P=0.132-0.988)。

数据结论

为了区分高级别和低级别 PCa,基于 ADC 图自动分割的放射组学模型具有与手动分割和活检相似的诊断效能,突出了全自动工作流程结合自动分割和放射组学分析的可能性。

证据水平

4 级 技术功效:2 级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验