Integrative Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands.
Learning & Reasoning Group, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands.
Bioinformatics. 2024 Jan 2;40(1). doi: 10.1093/bioinformatics/btad771.
Up-to-date pathway knowledge is usually presented in scientific publications for human reading, making it difficult to utilize these resources for semantic integration and computational analysis of biological pathways. We here present an approach to mining knowledge graphs by combining manual curation with automated named entity recognition and automated relation extraction. This approach allows us to study pathway-related questions in detail, which we here show using the ketamine pathway, aiming to help improve understanding of the role of gut microbiota in the antidepressant effects of ketamine.
The thus devised ketamine pathway 'KetPath' knowledge graph comprises five parts: (i) manually curated pathway facts from images; (ii) recognized named entities in biomedical texts; (iii) identified relations between named entities; (iv) our previously constructed microbiota and pre-/probiotics knowledge bases; and (v) multiple community-accepted public databases. We first assessed the performance of automated extraction of relations between named entities using the specially designed state-of-the-art tool BioKetBERT. The query results show that we can retrieve drug actions, pathway relations, co-occurring entities, and their relations. These results uncover several biological findings, such as various gut microbes leading to increased expression of BDNF, which may contribute to the sustained antidepressant effects of ketamine. We envision that the methods and findings from this research will aid researchers who wish to integrate and query data and knowledge from multiple biomedical databases and literature simultaneously.
Data and query protocols are available in the KetPath repository at https://dx.doi.org/10.5281/zenodo.8398941 and https://github.com/tingcosmos/KetPath.
最新的通路知识通常以科学出版物的形式呈现给人类阅读,因此难以利用这些资源进行生物通路的语义集成和计算分析。我们在这里提出了一种通过将人工整理与自动命名实体识别和自动关系提取相结合来挖掘知识图的方法。这种方法使我们能够详细研究与通路相关的问题,我们在这里展示了使用氯胺酮通路的情况,旨在帮助提高对肠道微生物群在氯胺酮抗抑郁作用中的作用的理解。
因此设计的氯胺酮通路“KetPath”知识图包括五个部分:(i)来自图像的手动整理的通路事实;(ii)生物医学文本中的识别命名实体;(iii)命名实体之间的识别关系;(iv)我们之前构建的微生物群和预/益生菌知识库;和(v)多个社区公认的公共数据库。我们首先使用专门设计的最先进工具 BioKetBERT 评估了自动提取命名实体之间关系的性能。查询结果表明,我们可以检索药物作用、通路关系、共同出现的实体及其关系。这些结果揭示了一些生物学发现,例如各种肠道微生物导致 BDNF 表达增加,这可能有助于氯胺酮的持续抗抑郁作用。我们设想,这项研究的方法和发现将有助于希望同时整合和查询来自多个生物医学数据库和文献的数据和知识的研究人员。
数据和查询协议可在 https://dx.doi.org/10.5281/zenodo.8398941 和 https://github.com/tingcosmos/KetPath 中的 KetPath 存储库中获得。