Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
SURE-REU Program in Biological Mechanisms, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Genetics. 2024 Mar 6;226(3). doi: 10.1093/genetics/iyad216.
Accurate segregation of homologous chromosomes during meiosis depends on both the presence and the regulated placement of crossovers (COs). The centromere effect, or CO exclusion in pericentromeric regions of the chromosome, is a meiotic CO patterning phenomenon that helps prevent nondisjunction, thereby protecting against chromosomal disorders and other meiotic defects. Despite being identified nearly a century ago, the mechanisms behind this fundamental cellular process remain unknown, with most studies of the Drosophila centromere effect focusing on local influences of the centromere and pericentric heterochromatin. In this study, we sought to investigate whether dosage changes in centromere number and repetitive DNA content affect the strength of the centromere effect, using phenotypic recombination mapping. Additionally, we studied the effects of repetitive DNA function on centromere effect strength using satellite DNA-binding protein mutants displaying defective centromere-clustering in meiotic nuclei. Despite what previous studies suggest, our results show that the Drosophila centromere effect is robust to changes in centromere number, repetitive DNA content, as well as repetitive DNA function. Our study suggests that the centromere effect is unlikely to be spatially controlled, providing novel insight into the mechanisms behind the Drosophila centromere effect.
在减数分裂过程中,同源染色体的准确分离依赖于交叉(CO)的存在和调控。着丝粒效应,或着丝粒周围区域的 CO 排除,是一种减数分裂 CO 图案形成现象,有助于防止非分离,从而防止染色体紊乱和其他减数分裂缺陷。尽管这个基本的细胞过程几乎在一个世纪前就被发现了,但它背后的机制仍然未知,大多数关于果蝇着丝粒效应的研究都集中在着丝粒和着丝粒周围异染色质的局部影响上。在这项研究中,我们试图通过表型重组作图来研究着丝粒数量和重复 DNA 含量的变化是否会影响着丝粒效应的强度。此外,我们还使用卫星 DNA 结合蛋白突变体研究了重复 DNA 功能对着丝粒效应强度的影响,这些突变体在减数分裂核中表现出着丝粒聚类缺陷。与之前的研究结果相反,我们的结果表明,果蝇着丝粒效应对着丝粒数量、重复 DNA 含量以及重复 DNA 功能的变化具有很强的稳定性。我们的研究表明,着丝粒效应不太可能受到空间控制,这为果蝇着丝粒效应的机制提供了新的见解。