Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany.
Genome Biol. 2024 Jan 22;25(1):30. doi: 10.1186/s13059-024-03163-4.
Centromeres load kinetochore complexes onto chromosomes, which mediate spindle attachment and allow segregation during cell division. Although centromeres perform a conserved cellular function, their underlying DNA sequences are highly divergent within and between species. Despite variability in DNA sequence, centromeres are also universally suppressed for meiotic crossover recombination, across eukaryotes. However, the genetic and epigenetic factors responsible for suppression of centromeric crossovers remain to be completely defined.
To explore the centromere-proximal meiotic recombination landscape, we map 14,397 crossovers against fully assembled Arabidopsis thaliana (A. thaliana) genomes. A. thaliana centromeres comprise megabase satellite repeat arrays that load nucleosomes containing the CENH3 histone variant. Each chromosome contains a structurally polymorphic region of ~3-4 megabases, which lack crossovers and include the satellite arrays. This polymorphic region is flanked by ~1-2 megabase low-recombination zones. These recombination-suppressed regions are enriched for Gypsy/Ty3 retrotransposons, and additionally contain expressed genes with high genetic diversity that initiate meiotic recombination, yet do not crossover. We map crossovers at high-resolution in proximity to CEN3, which resolves punctate centromere-proximal hotspots that overlap gene islands embedded in heterochromatin. Centromeres are densely DNA methylated and the recombination landscape is remodelled in DNA methylation mutants. We observe that the centromeric low-recombining zones decrease and increase crossovers in CG (met1) and non-CG (cmt3) mutants, respectively, whereas the core non-recombining zones remain suppressed.
Our work relates the genetic and epigenetic organization of A. thaliana centromeres and flanking pericentromeric heterochromatin to the zones of crossover suppression that surround the CENH3-occupied satellite repeat arrays.
着丝粒将动粒复合物加载到染色体上,介导纺锤体附着,并允许细胞分裂过程中的分离。尽管着丝粒执行保守的细胞功能,但它们在物种内和物种间的基础 DNA 序列高度不同。尽管 DNA 序列存在可变性,但在真核生物中,着丝粒也普遍抑制减数分裂交叉重组。然而,负责抑制着丝粒交叉重组的遗传和表观遗传因素仍有待完全定义。
为了探索着丝粒近端减数分裂重组景观,我们针对完全组装的拟南芥(Arabidopsis thaliana)基因组绘制了 14397 个交叉点。拟南芥着丝粒由包含 CENH3 组蛋白变体的核小体组成的兆碱基卫星重复阵列组成。每条染色体都包含一个约 3-4 兆碱基的结构多态性区域,该区域缺乏交叉点,并且包含卫星阵列。这个多态性区域的两侧是约 1-2 兆碱基的低重组区。这些重组抑制区域富含 Gypsy/Ty3 反转录转座子,此外还包含具有高遗传多样性的表达基因,这些基因启动减数分裂重组,但不发生交叉。我们在靠近 CEN3 的高分辨率处绘制了交叉点,解决了与位于异染色质中的基因岛重叠的点状着丝粒近端热点。着丝粒高度 DNA 甲基化,并且在 DNA 甲基化突变体中重组景观发生重塑。我们观察到,在 CG(met1)和非 CG(cmt3)突变体中,着丝粒的低重组区分别减少和增加了交叉点,而核心非重组区仍然受到抑制。
我们的工作将拟南芥着丝粒和侧翼着丝粒异染色质的遗传和表观遗传组织与围绕着丝粒 CENH3 占据的卫星重复阵列的交叉抑制区联系起来。