Suppr超能文献

基于计算智能范式的气象预测因子在半干旱大陆性气候下稳健日土壤温度估算方法的发展。

Development of a robust daily soil temperature estimation in semi-arid continental climate using meteorological predictors based on computational intelligent paradigms.

机构信息

Department of Civil Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

Department of Civil Engineering, Tishk International University-Sulaimani, Kurdistan Region, Iraq.

出版信息

PLoS One. 2023 Dec 27;18(12):e0293751. doi: 10.1371/journal.pone.0293751. eCollection 2023.

Abstract

Changes in soil temperature (ST) play an important role in the main mechanisms within the soil, including biological and chemical activities. For instance, they affect the microbial community composition, the speed at which soil organic matter breaks down and becomes minerals. Moreover, the growth and physiological activity of plants are directly influenced by the ST. Additionally, ST indirectly affects plant growth by influencing the accessibility of nutrients in the soil. Therefore, designing an efficient tool for ST estimating at different depths is useful for soil studies by considering meteorological parameters as input parameters, maximal air temperature, minimal air temperature, maximal air relative humidity, minimal air relative humidity, precipitation, and wind speed. This investigation employed various statistical metrics to evaluate the efficacy of the implemented models. These metrics encompassed the correlation coefficient (r), root mean square error (RMSE), Nash-Sutcliffe (NS) efficiency, and mean absolute error (MAE). Hence, this study presented several artificial intelligence-based models, MLPANN, SVR, RFR, and GPR for building robust predictive tools for daily scale ST estimation at 05, 10, 20, 30, 50, and 100cm soil depths. The suggested models are evaluated at two meteorological stations (i.e., Sulaimani and Dukan) located in Kurdistan region, Iraq. Based on assessment of outcomes of this study, the suggested models exhibited exceptional predictive capabilities and comparison of the results showed that among the proposed frameworks, GPR yielded the best results for 05, 10, 20, and 100cm soil depths, with RMSE values of 1.814°C, 1.652°C, 1.773°C, and 2.891°C, respectively. Also, for 50cm soil depth, MLPANN performed the best with an RMSE of 2.289°C at Sulaimani station using the RMSE during the validation phase. Furthermore, GPR produced the most superior outcomes for 10cm, 30cm, and 50cm soil depths, with RMSE values of 1.753°C, 2.270°C, and 2.631°C, respectively. In addition, for 05cm soil depth, SVR achieved the highest level of performance with an RMSE of 1.950°C at Dukan station. The results obtained in this research confirmed that the suggested models have the potential to be effectively used as daily predictive tools at different stations and various depths.

摘要

土壤温度(ST)的变化在土壤的主要机制中起着重要作用,包括生物和化学活动。例如,它们影响微生物群落的组成、土壤有机物质分解并成为矿物质的速度。此外,ST 直接影响植物的生长和生理活动。此外,ST 通过影响土壤中养分的可及性间接影响植物的生长。因此,设计一种有效的工具来估计不同深度的 ST 对于考虑气象参数作为输入参数、最大空气温度、最小空气温度、最大空气相对湿度、最小空气相对湿度、降水和风速的土壤研究是有用的。本研究采用了各种统计指标来评估所实现模型的效果。这些指标包括相关系数(r)、均方根误差(RMSE)、纳什-苏特克里夫(NS)效率和平均绝对误差(MAE)。因此,本研究提出了几种基于人工智能的模型,即 MLPANN、SVR、RFR 和 GPR,用于构建强大的预测工具,以估计每日尺度 05、10、20、30、50 和 100cm 土壤深度的 ST。在所提出的模型中,在位于伊拉克库尔德地区的两个气象站(即苏莱曼尼亚和杜坎)进行了评估。基于对本研究结果的评估,所提出的模型表现出出色的预测能力,结果比较表明,在所提出的框架中,GPR 在 05、10、20 和 100cm 土壤深度处的结果最佳,RMSE 值分别为 1.814°C、1.652°C、1.773°C 和 2.891°C。此外,在苏莱曼尼亚站使用验证阶段的 RMSE 时,MLPANN 在 50cm 土壤深度处表现最佳,RMSE 为 2.289°C。此外,GPR 在 10cm、30cm 和 50cm 土壤深度处产生了最优越的结果,RMSE 值分别为 1.753°C、2.270°C 和 2.631°C。此外,在杜坎站,SVR 实现了最佳性能,RMSE 为 1.950°C。本研究的结果证实,所提出的模型具有作为不同站和不同深度的每日预测工具有效使用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/279d/10752566/6f3e0d2c5795/pone.0293751.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验