Suppr超能文献

一种用于大气条件下光催化的多模式流动反应器。

A multimodal flow reactor for photocatalysis under atmospheric conditions.

作者信息

Garcia-Esparza Angel T, Qureshi Muhammad, Skoien Dean, Hersbach Thomas J P, Sokaras Dimosthenis

机构信息

SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.

出版信息

J Chem Phys. 2023 Dec 28;159(24). doi: 10.1063/5.0179259.

Abstract

Photocatalysis is a promising concept for the direct conversion of solar energy into fuels and chemicals. The design, experimental protocol, and performance of a multimodal and versatile flow reactor for the characterization of powdered and immobilized photocatalysts are herein presented. Ultimately, this instrument enables rigorous evaluation of photocatalysis performance metrics. The apparatus quantifies transient gas-phase reaction products via online real-time gas analyzer mass spectrometry (RTGA-MS). For H2, the most challenging gas, the photocatalytic system's RTGA-MS gas detection sensitivity spans over three orders of magnitude and can detect down to tens of parts per million under atmospheric conditions. Using Pt nanoparticles supported on anatase TiO2 photocatalyst via wet impregnation, the instrument's capability for the characterization of photocatalytic H2 evolution is demonstrated, resulting in an apparent quantum yield (AQY) of 48.1% ± 0.9% at 320 nm, 45.7% ± 0.3% at 340 nm and 31% ± 1% at 360 nm. The photodeposition of Pt on anatase TiO2 was employed to demonstrate the instrument's capability to track the transient behavior of photocatalysts, resulting in an improved 55% ± 2% AQY for H2 evolution at 340 nm from aqueous methanol. This photocatalytic instrument enables systematic study of a wide variety of photocatalytic reactions such as water splitting and CO2 reduction to valuable C2+ fuels and chemicals.

摘要

光催化是一种将太阳能直接转化为燃料和化学品的很有前景的概念。本文介绍了一种用于表征粉末状和固定化光催化剂的多模式通用流动反应器的设计、实验方案及性能。最终,该仪器能够对光催化性能指标进行严格评估。该装置通过在线实时气体分析仪质谱仪(RTGA-MS)对瞬态气相反应产物进行定量分析。对于最具挑战性的气体氢气,光催化系统的RTGA-MS气体检测灵敏度跨越三个数量级,在大气条件下可检测到低至百万分之几十的浓度。通过湿浸渍法将铂纳米颗粒负载在锐钛矿型二氧化钛光催化剂上,展示了该仪器对光催化析氢的表征能力,在320nm处的表观量子产率(AQY)为48.1%±0.9%,在340nm处为45.7%±0.3%,在360nm处为31%±1%。利用铂在锐钛矿型二氧化钛上的光沉积来展示该仪器跟踪光催化剂瞬态行为的能力,使得从甲醇水溶液中析氢在340nm处的AQY提高到55%±2%。这种光催化仪器能够对多种光催化反应进行系统研究,如水分解以及将二氧化碳还原为有价值的C2+燃料和化学品。

相似文献

1
A multimodal flow reactor for photocatalysis under atmospheric conditions.
J Chem Phys. 2023 Dec 28;159(24). doi: 10.1063/5.0179259.
2
Revisiting Pt/TiO photocatalysts for thermally assisted photocatalytic reduction of CO.
Nanoscale. 2020 Apr 3;12(13):7000-7010. doi: 10.1039/c9nr09743k.
3
Sequential cocatalyst decoration on BaTaON towards highly-active Z-scheme water splitting.
Nat Commun. 2021 Feb 12;12(1):1005. doi: 10.1038/s41467-021-21284-3.
4
Solar-Driven Lignocellulose-to-H Conversion in Water using 2D-2D MoS /TiO Photocatalysts.
ChemSusChem. 2021 Jul 22;14(14):2860-2865. doi: 10.1002/cssc.202100829. Epub 2021 Jun 19.
5
Insights on Carbon Neutrality by Photocatalytic Conversion of Small Molecules into Value-Added Chemicals or Fuels.
Acc Mater Res. 2022 Dec 23;3(12):1206-1219. doi: 10.1021/accountsmr.2c00095. Epub 2022 Nov 4.
7
Elucidating the mechanism of photocatalytic reduction of bicarbonate (aqueous CO) into formate and other organics.
J Colloid Interface Sci. 2023 Nov;649:918-928. doi: 10.1016/j.jcis.2023.06.155. Epub 2023 Jun 24.
8
Direct Coupling of Thermo- and Photocatalysis for Conversion of CO -H O into Fuels.
ChemSusChem. 2017 Dec 8;10(23):4709-4714. doi: 10.1002/cssc.201701472. Epub 2017 Nov 14.
9
The CO photoconversion over reduced graphene oxide based on Ag/TiO photocatalyst in an advanced meso-scale continuous-flow photochemical reactor.
Environ Sci Pollut Res Int. 2021 Jul;28(27):36157-36173. doi: 10.1007/s11356-021-13090-7. Epub 2021 Mar 9.
10
Defect Engineering of Ultrasmall TiO Nanoparticles Enables Highly Efficient Photocatalysts for Solar H Production from Woody Biomass.
Nano Lett. 2024 Sep 25;24(38):11968-11975. doi: 10.1021/acs.nanolett.4c03361. Epub 2024 Sep 11.

引用本文的文献

本文引用的文献

1
Radical generation and fate control for photocatalytic biomass conversion.
Nat Rev Chem. 2022 Mar;6(3):197-214. doi: 10.1038/s41570-022-00359-9. Epub 2022 Feb 10.
2
Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting.
Nature. 2023 Jan;613(7942):66-70. doi: 10.1038/s41586-022-05399-1. Epub 2023 Jan 4.
3
Prospects and good experimental practices for photocatalytic ammonia synthesis.
Nat Commun. 2022 Dec 23;13(1):7908. doi: 10.1038/s41467-022-35489-7.
4
A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting.
Nat Commun. 2022 Sep 28;13(1):5698. doi: 10.1038/s41467-022-33439-x.
5
Facet-Dependent Surface Charge and Hydration of Semiconducting Nanoparticles at Variable pH.
Adv Mater. 2021 Dec;33(52):e2106229. doi: 10.1002/adma.202106229. Epub 2021 Oct 15.
6
Photocatalytic solar hydrogen production from water on a 100-m scale.
Nature. 2021 Oct;598(7880):304-307. doi: 10.1038/s41586-021-03907-3. Epub 2021 Aug 25.
7
Delivering the Full Potential of Oxygen Evolving Electrocatalyst by Conditioning Electrolytes at Near-Neutral pH.
ChemSusChem. 2021 Mar 22;14(6):1554-1564. doi: 10.1002/cssc.202002813. Epub 2021 Feb 4.
8
Toward Standardized Photocatalytic Oxygen Evolution Rates Using RuO@TiO as a Benchmark.
Matter. 2020 Aug 5;3(2):464-486. doi: 10.1016/j.matt.2020.07.021.
9
Photocatalytic water splitting with a quantum efficiency of almost unity.
Nature. 2020 May;581(7809):411-414. doi: 10.1038/s41586-020-2278-9. Epub 2020 May 27.
10
Influence of pH and Surface Orientation on the Photochemical Reactivity of SrTiO.
ACS Appl Mater Interfaces. 2020 May 20;12(20):23617-23626. doi: 10.1021/acsami.0c04351. Epub 2020 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验