Wang Zheng, Luo Ying, Hisatomi Takashi, Vequizo Junie Jhon M, Suzuki Sayaka, Chen Shanshan, Nakabayashi Mamiko, Lin Lihua, Pan Zhenhua, Kariya Nobuko, Yamakata Akira, Shibata Naoya, Takata Tsuyoshi, Teshima Katsuya, Domen Kazunari
Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano-shi, Nagano, Japan.
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Nat Commun. 2021 Feb 12;12(1):1005. doi: 10.1038/s41467-021-21284-3.
Oxynitride photocatalysts hold promise for renewable solar hydrogen production via water splitting owing to their intense visible light absorption. Cocatalyst loading is essential for activation of such oxynitride photocatalysts. However, cocatalyst nanoparticles form aggregates and exhibit weak interaction with photocatalysts, which prevents eliciting their intrinsic photocatalytic performance. Here, we demonstrate efficient utilization of photoexcited electrons in a single-crystalline particulate BaTaON photocatalyst prepared with the assistance of RbCl flux for H evolution reactions via sequential decoration of Pt cocatalyst by impregnation-reduction followed by site-selective photodeposition. The Pt-loaded BaTaON photocatalyst evolves H over 100 times more efficiently than before, with an apparent quantum yield of 6.8% at the wavelength of 420 nm, from a methanol aqueous solution, and a solar-to-hydrogen energy conversion efficiency of 0.24% in Z-scheme water splitting. Enabling uniform dispersion and intimate contact of cocatalyst nanoparticles on single-crystalline narrow-bandgap particulate photocatalysts is a key to efficient solar-to-chemical energy conversion.
氮氧化物光催化剂由于其强烈的可见光吸收能力,在通过水分解实现可再生太阳能制氢方面具有潜力。助催化剂负载对于此类氮氧化物光催化剂的活化至关重要。然而,助催化剂纳米颗粒会形成聚集体,并且与光催化剂之间的相互作用较弱,这阻碍了其固有光催化性能的发挥。在此,我们展示了在RbCl助熔剂辅助下制备的单晶颗粒状BaTaON光催化剂中光激发电子的高效利用,用于通过浸渍还原法依次负载Pt助催化剂,随后进行位点选择性光沉积来实现析氢反应。负载Pt的BaTaON光催化剂析氢效率比之前提高了100倍以上,在420nm波长下从甲醇水溶液中析氢的表观量子产率为6.8%,在Z型水分解中太阳能到氢能的能量转换效率为0.24%。使助催化剂纳米颗粒在单晶窄带隙颗粒光催化剂上均匀分散并紧密接触是实现高效太阳能到化学能转换的关键。