Suppr超能文献

在 BaTaON 上进行顺序助催化剂修饰以实现高活性 Z 型水分解。

Sequential cocatalyst decoration on BaTaON towards highly-active Z-scheme water splitting.

作者信息

Wang Zheng, Luo Ying, Hisatomi Takashi, Vequizo Junie Jhon M, Suzuki Sayaka, Chen Shanshan, Nakabayashi Mamiko, Lin Lihua, Pan Zhenhua, Kariya Nobuko, Yamakata Akira, Shibata Naoya, Takata Tsuyoshi, Teshima Katsuya, Domen Kazunari

机构信息

Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano-shi, Nagano, Japan.

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.

出版信息

Nat Commun. 2021 Feb 12;12(1):1005. doi: 10.1038/s41467-021-21284-3.

Abstract

Oxynitride photocatalysts hold promise for renewable solar hydrogen production via water splitting owing to their intense visible light absorption. Cocatalyst loading is essential for activation of such oxynitride photocatalysts. However, cocatalyst nanoparticles form aggregates and exhibit weak interaction with photocatalysts, which prevents eliciting their intrinsic photocatalytic performance. Here, we demonstrate efficient utilization of photoexcited electrons in a single-crystalline particulate BaTaON photocatalyst prepared with the assistance of RbCl flux for H evolution reactions via sequential decoration of Pt cocatalyst by impregnation-reduction followed by site-selective photodeposition. The Pt-loaded BaTaON photocatalyst evolves H over 100 times more efficiently than before, with an apparent quantum yield of 6.8% at the wavelength of 420 nm, from a methanol aqueous solution, and a solar-to-hydrogen energy conversion efficiency of 0.24% in Z-scheme water splitting. Enabling uniform dispersion and intimate contact of cocatalyst nanoparticles on single-crystalline narrow-bandgap particulate photocatalysts is a key to efficient solar-to-chemical energy conversion.

摘要

氮氧化物光催化剂由于其强烈的可见光吸收能力,在通过水分解实现可再生太阳能制氢方面具有潜力。助催化剂负载对于此类氮氧化物光催化剂的活化至关重要。然而,助催化剂纳米颗粒会形成聚集体,并且与光催化剂之间的相互作用较弱,这阻碍了其固有光催化性能的发挥。在此,我们展示了在RbCl助熔剂辅助下制备的单晶颗粒状BaTaON光催化剂中光激发电子的高效利用,用于通过浸渍还原法依次负载Pt助催化剂,随后进行位点选择性光沉积来实现析氢反应。负载Pt的BaTaON光催化剂析氢效率比之前提高了100倍以上,在420nm波长下从甲醇水溶液中析氢的表观量子产率为6.8%,在Z型水分解中太阳能到氢能的能量转换效率为0.24%。使助催化剂纳米颗粒在单晶窄带隙颗粒光催化剂上均匀分散并紧密接触是实现高效太阳能到化学能转换的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d334/7881033/26612f130d94/41467_2021_21284_Fig1_HTML.jpg

相似文献

1
Sequential cocatalyst decoration on BaTaON towards highly-active Z-scheme water splitting.
Nat Commun. 2021 Feb 12;12(1):1005. doi: 10.1038/s41467-021-21284-3.
2
CO Reduction Using Water as an Electron Donor over Heterogeneous Photocatalysts Aiming at Artificial Photosynthesis.
Acc Chem Res. 2022 Apr 5;55(7):966-977. doi: 10.1021/acs.accounts.1c00676. Epub 2022 Mar 1.
4
Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting.
Chem Soc Rev. 2019 Apr 1;48(7):2109-2125. doi: 10.1039/c8cs00542g.
5
An Oxysulfide Photocatalyst Evolving Hydrogen with an Apparent Quantum Efficiency of 30 % under Visible Light.
Angew Chem Int Ed Engl. 2023 Nov 13;62(46):e202312938. doi: 10.1002/anie.202312938. Epub 2023 Oct 12.
6
Visible Light-Driven Z-Scheme Water Splitting Using Oxysulfide H Evolution Photocatalysts.
J Phys Chem Lett. 2016 Oct 6;7(19):3892-3896. doi: 10.1021/acs.jpclett.6b01802. Epub 2016 Sep 21.
8
Recent progress in oxynitride photocatalysts for visible-light-driven water splitting.
Sci Technol Adv Mater. 2015 May 26;16(3):033506. doi: 10.1088/1468-6996/16/3/033506. eCollection 2015 Jun.

引用本文的文献

2
Surface Modifications of Layered Perovskite Oxysulfide Photocatalyst YTiOS to Enhance Visible-Light-Driven Water Splitting.
Adv Sci (Weinh). 2025 Jan;12(3):e2412326. doi: 10.1002/advs.202412326. Epub 2024 Nov 27.
7
Photocatalytic Hydrogen Evolution Activity of Nitrogen/Fluorine-Codoped Rutile TiO.
ACS Omega. 2023 Oct 23;8(44):41809-41815. doi: 10.1021/acsomega.3c06492. eCollection 2023 Nov 7.
8
Perovskite BaTaO N: From Materials Synthesis to Solar Water Splitting.
Adv Sci (Weinh). 2023 Nov;10(33):e2305179. doi: 10.1002/advs.202305179. Epub 2023 Oct 18.
9
Transition-metal (oxy)nitride photocatalysts for water splitting.
Chem Sci. 2023 Jul 28;14(35):9248-9257. doi: 10.1039/d3sc03198e. eCollection 2023 Sep 13.
10
Creation and Plasmon-Assisted Photosensitization of Annealed Z-Schemes for Sunlight-Only Water Splitting.
ACS Appl Mater Interfaces. 2023 Jun 21;15(24):29072-29083. doi: 10.1021/acsami.3c02884. Epub 2023 Jun 6.

本文引用的文献

1
Photocatalytic water splitting with a quantum efficiency of almost unity.
Nature. 2020 May;581(7809):411-414. doi: 10.1038/s41586-020-2278-9. Epub 2020 May 27.
2
A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts.
Angew Chem Int Ed Engl. 2020 Jun 8;59(24):9653-9658. doi: 10.1002/anie.202001438. Epub 2020 Mar 31.
3
5
Construction of Spatial Charge Separation Facets on BaTaON Crystals by Flux Growth Approach for Visible-Light-Driven H Production.
ACS Appl Mater Interfaces. 2019 Jun 26;11(25):22264-22271. doi: 10.1021/acsami.9b03747. Epub 2019 Jun 12.
7
A Cocatalyst that Stabilizes a Hydride Intermediate during Photocatalytic Hydrogen Evolution over a Rhodium-Doped TiO Nanosheet.
Angew Chem Int Ed Engl. 2018 Jul 16;57(29):9073-9077. doi: 10.1002/anie.201803214. Epub 2018 Jun 19.
8
Mimicking Natural Photosynthesis: Solar to Renewable H Fuel Synthesis by Z-Scheme Water Splitting Systems.
Chem Rev. 2018 May 23;118(10):5201-5241. doi: 10.1021/acs.chemrev.7b00286. Epub 2018 Apr 20.
9
Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.
ChemSusChem. 2017 Nov 23;10(22):4277-4305. doi: 10.1002/cssc.201701598. Epub 2017 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验