Suppr超能文献

使用人工智能进行步态障碍患者的定量步态分析和预测。

Quantitative gait analysis and prediction using artificial intelligence for patients with gait disorders.

机构信息

LaTIM UMR 1101 Laboratory, Inserm, Brest, France.

Western Brittany University, Brest, France.

出版信息

Sci Rep. 2023 Dec 28;13(1):23099. doi: 10.1038/s41598-023-49883-8.

Abstract

Quantitative Gait Analysis (QGA) is considered as an objective measure of gait performance. In this study, we aim at designing an artificial intelligence that can efficiently predict the progression of gait quality using kinematic data obtained from QGA. For this purpose, a gait database collected from 734 patients with gait disorders is used. As the patient walks, kinematic data is collected during the gait session. This data is processed to generate the Gait Profile Score (GPS) for each gait cycle. Tracking potential GPS variations enables detecting changes in gait quality. In this regard, our work is driven by predicting such future variations. Two approaches were considered: signal-based and image-based. The signal-based one uses raw gait cycles, while the image-based one employs a two-dimensional Fast Fourier Transform (2D FFT) representation of gait cycles. Several architectures were developed, and the obtained Area Under the Curve (AUC) was above 0.72 for both approaches. To the best of our knowledge, our study is the first to apply neural networks for gait prediction tasks.

摘要

定量步态分析(QGA)被认为是步态表现的客观测量方法。在这项研究中,我们旨在设计一种人工智能,能够使用从 QGA 获得的运动学数据有效地预测步态质量的进展。为此,使用了从 734 名步态障碍患者中收集的步态数据库。当患者行走时,在步态会话期间收集运动学数据。对这些数据进行处理,为每个步态周期生成步态特征评分(GPS)。跟踪潜在的 GPS 变化可以检测步态质量的变化。在这方面,我们的工作旨在预测未来的这些变化。我们考虑了两种方法:基于信号和基于图像的方法。基于信号的方法使用原始步态周期,而基于图像的方法则采用步态周期的二维快速傅里叶变换(2D FFT)表示。开发了几种架构,两种方法的曲线下面积(AUC)均高于 0.72。据我们所知,我们的研究是首次将神经网络应用于步态预测任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f089/10754876/cc4324269af9/41598_2023_49883_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验