Suppr超能文献

电流体动力氧化还原3D打印中的纳米液滴飞行控制

Nanodroplet Flight Control in Electrohydrodynamic Redox 3D Printing.

作者信息

Menétrey Maxence, Zezulka Lukáš, Fandré Pascal, Schmid Fabian, Spolenak Ralph

机构信息

Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland.

Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic.

出版信息

ACS Appl Mater Interfaces. 2024 Jan 10;16(1):1283-1292. doi: 10.1021/acsami.3c10829. Epub 2023 Dec 29.

Abstract

Electrohydrodynamic 3D printing is an additive manufacturing technique with enormous potential in plasmonics, microelectronics, and sensing applications thanks to its broad material palette, high voxel deposition rate, and compatibility with various substrates. However, the electric field used to deposit material is concentrated at the depositing structure, resulting in the focusing of the charged droplets and geometry-dependent landing positions, which complicates the fabrication of complex 3D shapes. The low level of concordance between the design and printout seriously impedes the development of electrohydrodynamic 3D printing and rationalizes the simplicity of the designs reported so far. In this work, we break the electric field centrosymmetry to study the resulting deviation in the flight trajectory of the droplets. Comparison of experimental outcomes with predictions of an FEM model provides new insights into the droplet characteristics and unveils how the product of droplet size and charge uniquely governs its kinematics. From these insights, we develop reliable predictions of the jet trajectory and allow the computation of optimized printing paths counterbalancing the electric field distortion, thereby enabling the fabrication of geometries with unprecedented complexity.

摘要

电流体动力学3D打印是一种增材制造技术,由于其广泛的材料选择、高体素沉积速率以及与各种基板的兼容性,在等离子体、微电子和传感应用中具有巨大潜力。然而,用于沉积材料的电场集中在沉积结构上,导致带电液滴聚焦以及着陆位置与几何形状有关,这使得复杂3D形状的制造变得复杂。设计与打印结果之间的低一致性严重阻碍了电流体动力学3D打印的发展,并解释了迄今为止所报道设计的简单性。在这项工作中,我们打破电场中心对称性,以研究液滴飞行轨迹由此产生的偏差。将实验结果与有限元模型的预测进行比较,为液滴特性提供了新的见解,并揭示了液滴大小和电荷的乘积如何独特地控制其运动学。基于这些见解,我们开发了可靠的射流轨迹预测方法,并能够计算出优化的打印路径以平衡电场畸变,从而能够制造出具有前所未有的复杂性的几何形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d99/10788821/00b3134e32a2/am3c10829_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验