Reiser Alain, Koch Lukas, Dunn Kathleen A, Matsuura Toshiki, Iwata Futoshi, Fogel Ofer, Kotler Zvi, Zhou Nanjia, Charipar Kristin, Piqué Alberto, Rohner Patrik, Poulikakos Dimos, Lee Sanghyeon, Seol Seung Kwon, Utke Ivo, van Nisselroy Cathelijn, Zambelli Tomaso, Wheeler Jeffrey M, Spolenak Ralph
Laboratory for Nanometallurgy Department of Materials ETH Zürich Vladimir-Prelog-Weg 1-5/10 Zürich 8093 Switzerland.
College of Nanoscale Science & Engineering SUNY Polytechnic Institute 257 Fuller Road Albany NY 12203 USA.
Adv Funct Mater. 2020 Jul 9;30(28):1910491. doi: 10.1002/adfm.201910491. Epub 2020 May 25.
Many emerging applications in microscale engineering rely on the fabrication of 3D architectures in inorganic materials. Small-scale additive manufacturing (AM) aspires to provide flexible and facile access to these geometries. Yet, the synthesis of device-grade inorganic materials is still a key challenge toward the implementation of AM in microfabrication. Here, a comprehensive overview of the microstructural and mechanical properties of metals fabricated by most state-of-the-art AM methods that offer a spatial resolution ≤10 μm is presented. Standardized sets of samples are studied by cross-sectional electron microscopy, nanoindentation, and microcompression. It is shown that current microscale AM techniques synthesize metals with a wide range of microstructures and elastic and plastic properties, including materials of dense and crystalline microstructure with excellent mechanical properties that compare well to those of thin-film nanocrystalline materials. The large variation in materials' performance can be related to the individual microstructure, which in turn is coupled to the various physico-chemical principles exploited by the different printing methods. The study provides practical guidelines for users of small-scale additive methods and establishes a baseline for the future optimization of the properties of printed metallic objects-a significant step toward the potential establishment of AM techniques in microfabrication.
微尺度工程中的许多新兴应用依赖于无机材料中三维结构的制造。小规模增材制造(AM)旨在为这些几何结构提供灵活便捷的制造途径。然而,在微制造中实现增材制造,器件级无机材料的合成仍是一个关键挑战。在此,本文全面概述了通过大多数空间分辨率≤10μm的最先进增材制造方法制造的金属的微观结构和力学性能。通过横截面电子显微镜、纳米压痕和微压缩对标准化样本集进行了研究。结果表明,当前的微尺度增材制造技术能够合成具有广泛微观结构以及弹性和塑性性能的金属,包括具有致密且结晶微观结构、力学性能优异的材料,这些性能与薄膜纳米晶体材料相当。材料性能的巨大差异可能与各自的微观结构有关,而微观结构又与不同打印方法所利用的各种物理化学原理相关。该研究为小规模增材制造方法的用户提供了实用指南,并为未来优化打印金属物体的性能奠定了基础——这是朝着在微制造中潜在确立增材制造技术迈出的重要一步。