Graduate Group in Biophysics, University of California, Berkeley, Berkeley, California 94720, United States.
Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Am Chem Soc. 2024 Jan 10;146(1):386-398. doi: 10.1021/jacs.3c09549. Epub 2023 Dec 29.
Single-walled carbon nanotubes (SWCNTs) with adsorbed single-stranded DNA (ssDNA) are applied as sensors to investigate biological systems, with potential applications ranging from clinical diagnostics to agricultural biotechnology. Unique ssDNA sequences render SWCNTs selectively responsive to target analytes such as (GT)-SWCNTs recognizing the neuromodulator, dopamine. It remains unclear how the ssDNA conformation on the SWCNT surface contributes to functionality, as observations have been limited to computational models or experiments under dehydrated conditions that differ substantially from the aqueous biological environments in which the nanosensors are applied. We demonstrate a direct mode of measuring in-solution ssDNA geometries on SWCNTs via X-ray scattering interferometry (XSI), which leverages the interference pattern produced by AuNP tags conjugated to ssDNA on the SWCNT surface. We employ XSI to quantify distinct surface-adsorbed morphologies for two (GT) ssDNA oligomer lengths ( = 6, 15) that are used on SWCNTs in the context of dopamine sensing and measure the ssDNA conformational changes as a function of ionic strength and during dopamine interaction. We show that the shorter oligomer, (GT), adopts a more periodically ordered ring structure along the SWCNT axis (inter-ssDNA distance of 8.6 ± 0.3 nm), compared to the longer (GT) oligomer (most probable 5'-to-5' distance of 14.3 ± 1.1 nm). During molecular recognition, XSI reveals that dopamine elicits simultaneous axial elongation and radial constriction of adsorbed ssDNA on the SWCNT surface. Our approach using XSI to probe solution-phase morphologies of polymer-functionalized SWCNTs can be applied to yield insights into sensing mechanisms and inform future design strategies for nanoparticle-based sensors.
单壁碳纳米管 (SWCNT) 吸附单链 DNA (ssDNA) 后可作为传感器应用于生物系统研究,其潜在应用范围从临床诊断到农业生物技术。独特的 ssDNA 序列使 SWCNT 能够选择性地响应目标分析物,例如 (GT)-SWCNT 可识别神经调质多巴胺。目前尚不清楚 SWCNT 表面上的 ssDNA 构象如何对功能产生影响,因为观察结果仅限于计算模型或在脱水条件下的实验,而这些条件与纳米传感器应用的水生物环境有很大的不同。我们通过 X 射线散射干涉测量法 (XSI) 证明了一种直接测量 SWCNT 表面上溶液中 ssDNA 几何形状的方法,该方法利用了与 SWCNT 表面上 ssDNA 结合的 AuNP 标记产生的干涉图案。我们利用 XSI 对两种(GT)ssDNA 寡聚物长度(= 6、15)在多巴胺传感中的 SWCNT 上的不同表面吸附形态进行定量,测量了 ssDNA 构象变化作为离子强度和多巴胺相互作用的函数。我们表明,与较长的(GT)寡聚物(最可能的 5′-5′距离为 14.3 ± 1.1nm)相比,较短的寡聚物(GT)沿 SWCNT 轴呈现出更周期性有序的环形结构(ssDNA 之间的距离为 8.6 ± 0.3nm)。在分子识别过程中,XSI 表明多巴胺会引发吸附在 SWCNT 表面上的 ssDNA 的轴向伸长和径向收缩同时发生。我们使用 XSI 探测聚合物功能化 SWCNT 溶液相形态的方法可用于深入了解传感机制,并为基于纳米粒子的传感器的未来设计策略提供信息。