Suppr超能文献

利用金纳米粒子偶联 DNA 的 X 射线散射干涉测量法监测核酸酶活性。

Monitoring Nuclease Activity by X-Ray Scattering Interferometry Using Gold Nanoparticle-Conjugated DNA.

机构信息

Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA.

出版信息

Methods Mol Biol. 2022;2444:183-205. doi: 10.1007/978-1-0716-2063-2_12.

Abstract

The biologically critical, exquisite specificity and efficiency of nucleases, such as those acting in DNA repair and replication, often emerge in the context of multiple other macromolecules. The evolved complexity also makes biologically relevant nuclease assays challenging and low-throughput. Meiotic recombination 11 homolog 1 (MRE11) is an exemplary nuclease that initiates DNA double-strand break (DSB) repair and processes stalled DNA replication forks. Thus, DNA resection by MRE11 nuclease activity is critical for multiple DSB repair pathways as well as in replication. Traditionally, in vitro nuclease activity of purified enzymes is studied either through gel-based assays or fluorescence-based assays like fluorescence resonance energy transfer (FRET). However, adapting these methods for a high-throughput application such as inhibitor screening can be challenging. Gel-based approaches are slow, and FRET assays can suffer from interference and distance limitations. Here we describe an alternative methodology to monitor nuclease activity by measuring the small-angle X-ray scattering (SAXS) interference pattern from gold nanoparticles (Au NPs) conjugated to 5'-ends of dsDNA using X-ray scattering interferometry (XSI). In addition to reporting on the enzyme activity, XSI can provide insight into DNA-protein interactions, aiding in the development of inhibitors that trap enzymes on the DNA substrate. Enabled by efficient access to synchrotron beamlines, sample preparation, and the feasibility of high-throughput XSI data collection and processing pipelines, this method allows for far greater speeds with less sample consumption than conventional SAXS techniques. The reported metrics and methods can be generalized to monitor not only other nucleases but also most other DNA-protein interactions.

摘要

核酸酶(如参与 DNA 修复和复制的核酸酶)具有关键的生物学特性,即精确性和高效性,这种特性通常出现在多种其他大分子的背景下。进化带来的复杂性也使得生物相关的核酸酶检测具有挑战性且通量低。有丝分裂重组 11 同源物 1(MRE11)是一种典型的核酸酶,它可以启动 DNA 双链断裂(DSB)修复并处理停滞的 DNA 复制叉。因此,MRE11 核酸酶活性的 DNA 切除对于多种 DSB 修复途径以及复制过程都至关重要。传统上,通过凝胶基测定法或荧光测定法(如荧光共振能量转移(FRET))来研究纯化酶的体外核酸酶活性。然而,将这些方法应用于高通量应用(如抑制剂筛选)可能具有挑战性。凝胶基方法较慢,而 FRET 测定法可能会受到干扰和距离限制的影响。在这里,我们描述了一种替代方法,通过使用 X 射线散射干涉仪(XSI)测量连接到 dsDNA5'-末端的金纳米颗粒(Au NPs)的小角 X 射线散射(SAXS)干涉图来监测核酸酶活性。XSI 除了报告酶活性外,还可以提供有关 DNA-蛋白质相互作用的信息,有助于开发在 DNA 底物上捕获酶的抑制剂。得益于高效利用同步加速器光束线、样品制备以及高通量 XSI 数据采集和处理管道的可行性,与传统 SAXS 技术相比,该方法具有更快的速度和更少的样品消耗。所报道的指标和方法可以推广用于监测不仅是其他核酸酶,而且是大多数其他 DNA-蛋白质相互作用。

相似文献

1
Monitoring Nuclease Activity by X-Ray Scattering Interferometry Using Gold Nanoparticle-Conjugated DNA.
Methods Mol Biol. 2022;2444:183-205. doi: 10.1007/978-1-0716-2063-2_12.
2
Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair.
Cell. 2008 Oct 3;135(1):97-109. doi: 10.1016/j.cell.2008.08.017.
3
Quantifying Nucleic Acid Ensembles with X-ray Scattering Interferometry.
Methods Enzymol. 2015;558:75-97. doi: 10.1016/bs.mie.2015.02.001. Epub 2015 Apr 2.
5
Recording and Analyzing Nucleic Acid Distance Distributions with X-Ray Scattering Interferometry (XSI).
Curr Protoc Nucleic Acid Chem. 2018 Jun;73(1):e54. doi: 10.1002/cpnc.54. Epub 2018 Jun 7.
7
DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities.
Mol Cell. 2014 Jan 9;53(1):7-18. doi: 10.1016/j.molcel.2013.11.003. Epub 2013 Dec 5.
8
Coincident resection at both ends of random, γ-induced double-strand breaks requires MRX (MRN), Sae2 (Ctp1), and Mre11-nuclease.
PLoS Genet. 2013 Mar;9(3):e1003420. doi: 10.1371/journal.pgen.1003420. Epub 2013 Mar 28.
9
DNA end resection is needed for the repair of complex lesions in G1-phase human cells.
Cell Cycle. 2014;13(16):2509-16. doi: 10.4161/15384101.2015.941743.
10
Mre11 ATLD17/18 mutation retains Tel1/ATM activity but blocks DNA double-strand break repair.
Nucleic Acids Res. 2012 Dec;40(22):11435-49. doi: 10.1093/nar/gks954. Epub 2012 Oct 17.

引用本文的文献

1
A goldilocks computational protocol for inhibitor discovery targeting DNA damage responses including replication-repair functions.
Front Mol Biosci. 2024 Nov 28;11:1442267. doi: 10.3389/fmolb.2024.1442267. eCollection 2024.
2
Mapping the Morphology of DNA on Carbon Nanotubes in Solution Using X-ray Scattering Interferometry.
J Am Chem Soc. 2024 Jan 10;146(1):386-398. doi: 10.1021/jacs.3c09549. Epub 2023 Dec 29.
3
Dynamics of the DYNLL1-MRE11 complex regulate DNA end resection and recruitment of Shieldin to DSBs.
Nat Struct Mol Biol. 2023 Oct;30(10):1456-1467. doi: 10.1038/s41594-023-01074-9. Epub 2023 Sep 11.

本文引用的文献

1
: expanded functionality and new tools for small-angle scattering data analysis.
J Appl Crystallogr. 2021 Feb 1;54(Pt 1):343-355. doi: 10.1107/S1600576720013412.
2
Analysis of SEC-SAXS data via EFA deconvolution and Scatter.
J Vis Exp. 2021 Jan 28(167). doi: 10.3791/61578.
3
Mechanism of efficient double-strand break repair by a long non-coding RNA.
Nucleic Acids Res. 2020 Nov 4;48(19):10953-10972. doi: 10.1093/nar/gkaa784.
4
XRCC1 promotes replication restart, nascent fork degradation and mutagenic DNA repair in BRCA2-deficient cells.
NAR Cancer. 2020 Sep;2(3):zcaa013. doi: 10.1093/narcan/zcaa013. Epub 2020 Aug 1.
5
Structural basis for allosteric PARP-1 retention on DNA breaks.
Science. 2020 Apr 3;368(6486). doi: 10.1126/science.aax6367.
6
Replication-Based Rearrangements Are a Common Mechanism for SNCA Duplication in Parkinson's Disease.
Mov Disord. 2020 May;35(5):868-876. doi: 10.1002/mds.27998. Epub 2020 Feb 10.
7
Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death.
Nat Commun. 2019 Dec 11;10(1):5654. doi: 10.1038/s41467-019-13508-4.
9
Cancer mutational burden is shaped by G4 DNA, replication stress and mitochondrial dysfunction.
Prog Biophys Mol Biol. 2019 Oct;147:47-61. doi: 10.1016/j.pbiomolbio.2019.03.004. Epub 2019 Mar 14.
10
20 Years of Mre11 Biology: No End in Sight.
Mol Cell. 2018 Aug 2;71(3):419-427. doi: 10.1016/j.molcel.2018.06.033. Epub 2018 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验