Suppr超能文献

基于多类型特征融合的分子性质预测深度学习框架。

A deep learning framework for predicting molecular property based on multi-type features fusion.

机构信息

School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China; School of Mathematics and Statistics, Qinghai Normal University, Qinghai, 810000, China.

School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China.

出版信息

Comput Biol Med. 2024 Feb;169:107911. doi: 10.1016/j.compbiomed.2023.107911. Epub 2023 Dec 28.

Abstract

Extracting expressive molecular features is essential for molecular property prediction. Sequence-based representation is a common representation of molecules, which ignores the structure information of molecules. While molecular graph representation has a weak ability in expressing the 3D structure. In this article, we try to make use of the advantages of different type representations simultaneously for molecular property prediction. Thus, we propose a fusion model named DLF-MFF, which integrates the multi-type molecular features. Specifically, we first extract four different types of features from molecular fingerprints, 2D molecular graph, 3D molecular graph and molecular image. Then, in order to learn molecular features individually, we use four essential deep learning frameworks, which correspond to four distinct molecular representations. The final molecular representation is created by integrating the four feature vectors and feeding them into prediction layer to predict molecular property. We compare DLF-MFF with 7 state-of-the-art methods on 6 benchmark datasets consisting of multiple molecular properties, the experimental results show that DLF-MFF achieves state-of-the-art performance on 6 benchmark datasets. Moreover, DLF-MFF is applied to identify potential anti-SARS-CoV-2 inhibitor from 2500 drugs. We predict probability of each drug being inferred as a 3CL protease inhibitor and also calculate the binding affinity scores between each drug and 3CL protease. The results show that DLF-MFF product better performance in the identification of anti-SARS-CoV-2 inhibitor. This work is expected to offer novel research perspectives for accurate prediction of molecular properties and provide valuable insights into drug repurposing for COVID-19.

摘要

提取具有表现力的分子特征对于分子性质预测至关重要。基于序列的表示是分子的常见表示形式,它忽略了分子的结构信息。而分子图表示在表达 3D 结构方面能力较弱。在本文中,我们试图同时利用不同类型表示的优势来进行分子性质预测。因此,我们提出了一种名为 DLF-MFF 的融合模型,该模型集成了多种类型的分子特征。具体来说,我们首先从分子指纹、2D 分子图、3D 分子图和分子图像中提取出四种不同类型的特征。然后,为了单独学习分子特征,我们使用了四个基本的深度学习框架,它们对应于四种不同的分子表示。最终的分子表示是通过整合这四个特征向量并将它们输入到预测层来预测分子性质而创建的。我们在 6 个基准数据集上比较了 DLF-MFF 与 7 种最先进的方法,这些数据集包含多种分子性质,实验结果表明 DLF-MFF 在 6 个基准数据集上达到了最先进的性能。此外,DLF-MFF 被应用于从 2500 种药物中识别潜在的抗 SARS-CoV-2 抑制剂。我们预测了每种药物被推断为 3CL 蛋白酶抑制剂的概率,并且还计算了每种药物与 3CL 蛋白酶之间的结合亲和力分数。结果表明,DLF-MFF 在识别抗 SARS-CoV-2 抑制剂方面表现更好。这项工作有望为分子性质的准确预测提供新的研究视角,并为 COVID-19 的药物再利用提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验