文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

触须相关感觉和运动皮层输入到背侧纹状体的细胞类型特异性连接。

Cell-Type Specific Connectivity of Whisker-Related Sensory and Motor Cortical Input to Dorsal Striatum.

机构信息

Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey.

Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway 08854, New Jersey

出版信息

eNeuro. 2024 Jan 29;11(1). doi: 10.1523/ENEURO.0503-23.2023. Print 2024 Jan.


DOI:10.1523/ENEURO.0503-23.2023
PMID:38164611
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10849041/
Abstract

The anterior dorsolateral striatum (DLS) is heavily innervated by convergent excitatory projections from the primary motor (M1) and sensory cortex (S1) and considered an important site of sensorimotor integration. M1 and S1 corticostriatal synapses have functional differences in their connection strength with striatal spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in the DLS and, as a result, exert distinct influences on sensory-guided behaviors. In the present study, we tested whether M1 and S1 inputs exhibit differences in the subcellular anatomical distribution of striatal neurons. We injected adeno-associated viral vectors encoding spaghetti monster fluorescent proteins (sm.FPs) into M1 and S1 in male and female mice and used confocal microscopy to generate 3D reconstructions of corticostriatal inputs to single identified SPNs and FSIs obtained through ex vivo patch clamp electrophysiology. We found that M1 and S1 dually innervate SPNs and FSIs; however, there is a consistent bias towards the M1 input in SPNs that is not found in FSIs. In addition, M1 and S1 inputs were distributed similarly across the proximal, medial, and distal regions of SPN and FSI dendrites. Notably, closely localized M1 and S1 clusters of inputs were more prevalent in SPNs than FSIs, suggesting that cortical inputs are integrated through cell-type specific mechanisms. Our results suggest that the stronger functional connectivity from M1 to SPNs compared to S1, as previously observed, is due to a higher quantity of synaptic inputs. Our results have implications for how sensorimotor integration is performed in the striatum through cell-specific differences in corticostriatal connections.

摘要

腹外侧纹状体前部(DLS)被来自初级运动(M1)和感觉皮层(S1)的会聚兴奋性投射大量支配,并被认为是感觉运动整合的重要部位。M1 和 S1 皮质纹状体突触与 DLS 中的棘突投射神经元(SPNs)和快速放电中间神经元(FSIs)的连接强度存在功能差异,因此对感觉引导行为产生不同的影响。在本研究中,我们测试了 M1 和 S1 输入是否在纹状体神经元的亚细胞解剖分布中表现出差异。我们将编码意大利面条怪物荧光蛋白(sm.FPs)的腺相关病毒载体注入雄性和雌性小鼠的 M1 和 S1,并使用共聚焦显微镜对通过离体膜片钳电生理学获得的单个鉴定的 SPN 和 FSIs 的皮质纹状体输入进行 3D 重建。我们发现 M1 和 S1 双重支配 SPN 和 FSIs;然而,在 SPN 中存在一种一致的偏向 M1 输入的趋势,而在 FSIs 中则没有。此外,M1 和 S1 输入在 SPN 和 FSI 树突的近端、中间和远端区域分布相似。值得注意的是,在 SPN 中比在 FSIs 中更常见到紧密定位的 M1 和 S1 输入簇,这表明皮质输入是通过细胞类型特异性机制进行整合的。我们的研究结果表明,与 S1 相比,M1 到 SPN 的功能连接更强,这是由于突触输入的数量更多。我们的研究结果对于了解通过皮质纹状体连接的细胞特异性差异,如何在纹状体中进行感觉运动整合具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/161354983893/eneuro-11-ENEURO.0503-23.2023-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/3e9c7ad4705b/eneuro-11-ENEURO.0503-23.2023-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/b1510a585235/eneuro-11-ENEURO.0503-23.2023-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/24c47682b8e8/eneuro-11-ENEURO.0503-23.2023-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/d329abcfef39/eneuro-11-ENEURO.0503-23.2023-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/a316ff4c8dd7/eneuro-11-ENEURO.0503-23.2023-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/6477d7274d64/eneuro-11-ENEURO.0503-23.2023-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/161354983893/eneuro-11-ENEURO.0503-23.2023-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/3e9c7ad4705b/eneuro-11-ENEURO.0503-23.2023-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/b1510a585235/eneuro-11-ENEURO.0503-23.2023-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/24c47682b8e8/eneuro-11-ENEURO.0503-23.2023-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/d329abcfef39/eneuro-11-ENEURO.0503-23.2023-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/a316ff4c8dd7/eneuro-11-ENEURO.0503-23.2023-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/6477d7274d64/eneuro-11-ENEURO.0503-23.2023-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/10849041/161354983893/eneuro-11-ENEURO.0503-23.2023-g007.jpg

相似文献

[1]
Cell-Type Specific Connectivity of Whisker-Related Sensory and Motor Cortical Input to Dorsal Striatum.

eNeuro. 2024-1

[2]
Cell-Type Specific Connectivity of Whisker-Related Sensory and Motor Cortical Input to Dorsal Striatum.

bioRxiv. 2023-3-6

[3]
Strengthened Inputs from Secondary Motor Cortex to Striatum in a Mouse Model of Compulsive Behavior.

J Neurosci. 2019-2-8

[4]
Opposing Influence of Sensory and Motor Cortical Input on Striatal Circuitry and Choice Behavior.

Curr Biol. 2019-4-11

[5]
Converging sensory and motor cortical inputs onto the same striatal neurons: An in vivo intracellular investigation.

PLoS One. 2020-2-5

[6]
Representation of the body in the lateral striatum of the freely moving rat: Fast Spiking Interneurons respond to stimulation of individual body parts.

Brain Res. 2017-2-15

[7]
The Functional Organization of Cortical and Thalamic Inputs onto Five Types of Striatal Neurons Is Determined by Source and Target Cell Identities.

Cell Rep. 2020-1-28

[8]
Enhanced high-frequency membrane potential fluctuations control spike output in striatal fast-spiking interneurones in vivo.

J Physiol. 2011-9-1

[9]
A tonic nicotinic brake controls spike timing in striatal spiny projection neurons.

Elife. 2022-5-17

[10]
Inversely Active Striatal Projection Neurons and Interneurons Selectively Delimit Useful Behavioral Sequences.

Curr Biol. 2018-2-8

引用本文的文献

[1]
Role of posterior medial thalamus in the modulation of striatal circuitry and choice behavior.

Elife. 2025-5-13

[2]
An Open-Source Joystick Platform for Investigating Forelimb Motor Control, Auditory-Motor Integration, and Value-Based Decision-Making in Head-Fixed Mice.

eNeuro. 2025-4-28

[3]
An Open-Source Joystick Platform for Investigating Forelimb Motor Control, Auditory-Motor Integration, and Value-Based Decision-Making in Head-Fixed Mice.

bioRxiv. 2025-1-23

[4]
Role of Posterior Medial Thalamus in the Modulation of Striatal Circuitry and Choice Behavior.

bioRxiv. 2024-11-8

本文引用的文献

[1]
Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons.

Neuron. 2022-9-7

[2]
GABAergic interneurons expressing the α2 nicotinic receptor subunit are functionally integrated in the striatal microcircuit.

Cell Rep. 2022-5-24

[3]
Spatiotemporal reorganization of corticostriatal networks encodes motor skill learning.

Cell Rep. 2022-4-5

[4]
Convergence of forepaw somatosensory and motor cortical projections in the striatum, claustrum, thalamus, and pontine nuclei of cats.

Brain Struct Funct. 2022-1

[5]
Morphological Study of the Cortical and Thalamic Glutamatergic Synaptic Inputs of Striatal Parvalbumin Interneurons in Rats.

Neurochem Res. 2021-7

[6]
The microcircuits of striatum in silico.

Proc Natl Acad Sci U S A. 2020-4-22

[7]
Converging sensory and motor cortical inputs onto the same striatal neurons: An in vivo intracellular investigation.

PLoS One. 2020-2-5

[8]
The Functional Organization of Cortical and Thalamic Inputs onto Five Types of Striatal Neurons Is Determined by Source and Target Cell Identities.

Cell Rep. 2020-1-28

[9]
Synaptic Clustering and Memory Formation.

Front Mol Neurosci. 2019-12-6

[10]
Dendritic NMDA receptors in parvalbumin neurons enable strong and stable neuronal assemblies.

Elife. 2019-10-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索