Boujemaa Moussa, Peters Remi, Luan Jiabin, Mok Yieuw Hin, Keller Shauni, Wilson Daniela A
Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
Int J Mol Sci. 2025 Jun 30;26(13):6300. doi: 10.3390/ijms26136300.
Hydrogel particles, renowned for their high water content and biocompatibility in drug delivery and tissue engineering, typically rely on complex, costly microfluidic systems to reach sub 5 µm dimensions. We present a vortex-based inverse-emulsion polymerization strategy in which UV crosslinking of polyethylene glycol diacrylate (PEGDA) dispersed in n-hexadecane and squalene yields tunable micro- and nanogels while delineating the parameters that govern particle size and uniformity. Systematic variation in surfactant concentration, vessel volume, continuous phase viscosity, vortex speed and duration, oil-to-polymer ratio, polymer molecular weight, and pulsed vortexing revealed that increases in surfactant level, vortex intensity/duration, vessel volume, and oil-to-polymer ratio each reduced mean diameter and PDI, whereas higher polymer molecular weight and continuous phase viscosity broadened the size distribution. We further investigated how these same parameters can be tuned to shift particle populations between nano- and microscale regimes. Under optimized conditions, microhydrogels achieved a coefficient of variation of 0.26 and a PDI of 0.07, with excellent reproducibility, and nanogels measured 161 nm (PDI = 0.05). This rapid, cost-effective method enables precise and scalable control over hydrogel dimensions using only standard laboratory equipment, without specialized training.
水凝胶颗粒因其在药物递送和组织工程中具有高含水量和生物相容性而闻名,通常依赖复杂且昂贵的微流控系统来实现亚5微米的尺寸。我们提出了一种基于涡旋的反相乳液聚合策略,其中分散在正十六烷和角鲨烷中的聚乙二醇二丙烯酸酯(PEGDA)经紫外线交联可产生可调谐的微凝胶和纳米凝胶,同时确定控制粒径和均匀性的参数。对表面活性剂浓度、容器体积、连续相粘度、涡旋速度和持续时间、油与聚合物比例、聚合物分子量和脉冲涡旋进行系统变化研究发现,表面活性剂水平、涡旋强度/持续时间、容器体积和油与聚合物比例的增加均会降低平均直径和多分散指数(PDI),而较高的聚合物分子量和连续相粘度会拓宽尺寸分布。我们进一步研究了如何调整这些相同参数以在纳米和微米尺度区域之间转移颗粒群体。在优化条件下,微水凝胶的变异系数为0.26,多分散指数为0.07,具有出色的重现性,纳米凝胶尺寸为161纳米(多分散指数 = 0.05)。这种快速且经济高效的方法仅使用标准实验室设备就能对水凝胶尺寸进行精确且可扩展的控制,无需专门培训。