同载玻片空间多组学整合揭示肿瘤病毒相关的肿瘤微环境空间重组
Same-Slide Spatial Multi-Omics Integration Reveals Tumor Virus-Linked Spatial Reorganization of the Tumor Microenvironment.
作者信息
Yeo Yao Yu, Chang Yuzhou, Qiu Huaying, Yiu Stephanie Pei Tung, Michel Hendrik A, Wu Wenrui, Jin Xiaojie, Kure Shoko, Parmelee Lindsay, Luo Shuli, Cramer Precious, Lee Jia Le, Wang Yang, Yeung Jason, Ahmar Nourhan El, Simsek Berkay, Mohanna Razan, Van Orden McKayla, Lu Wesley, Livak Kenneth J, Li Shuqiang, Shahryari Jahanbanoo, Kingsley Leandra, Al-Humadi Reem N, Nasr Sahar, Nkosi Dingani, Sadigh Sam, Rock Philip, Frauenfeld Leonie, Kaufmann Louisa, Zhu Bokai, Basak Ankit, Dhanikonda Nagendra, Chan Chi Ngai, Krull Jordan, Cho Ye Won, Chen Chia-Yu, Lee Jia Ying Joey, Wang Hongbo, Zhao Bo, Loo Lit-Hsin, Kim David M, Boussiotis Vassiliki, Zhang Baochun, Shalek Alex K, Howitt Brooke, Signoretti Sabina, Schürch Christian M, Hodi F Stephan, Burack W Richard, Rodig Scott J, Ma Qin, Jiang Sizun
机构信息
Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States.
出版信息
bioRxiv. 2024 Dec 22:2024.12.20.629650. doi: 10.1101/2024.12.20.629650.
The advent of spatial transcriptomics and spatial proteomics have enabled profound insights into tissue organization to provide systems-level understanding of diseases. Both technologies currently remain largely independent, and emerging same slide spatial multi-omics approaches are generally limited in plex, spatial resolution, and analytical approaches. We introduce IN-situ DEtailed Phenotyping To High-resolution transcriptomics (IN-DEPTH), a streamlined and resource-effective approach compatible with various spatial platforms. This iterative approach first entails single-cell spatial proteomics and rapid analysis to guide subsequent spatial transcriptomics capture on the same slide without loss in RNA signal. To enable multi-modal insights not possible with current approaches, we introduce k-bandlimited Spectral Graph Cross-Correlation (SGCC) for integrative spatial multi-omics analysis. Application of IN-DEPTH and SGCC on lymphoid tissues demonstrated precise single-cell phenotyping and cell-type specific transcriptome capture, and accurately resolved the local and global transcriptome changes associated with the cellular organization of germinal centers. We then implemented IN-DEPTH and SGCC to dissect the tumor microenvironment (TME) of Epstein-Barr Virus (EBV)-positive and EBV-negative diffuse large B-cell lymphoma (DLBCL). Our results identified a key tumor-macrophage-CD4 T-cell immunomodulatory axis differently regulated between EBV-positive and EBV-negative DLBCL, and its central role in coordinating immune dysfunction and suppression. IN-DEPTH enables scalable, resource-efficient, and comprehensive spatial multi-omics dissection of tissues to advance clinically relevant discoveries.
空间转录组学和空间蛋白质组学的出现,使人们能够深入了解组织结构,从而从系统层面理解疾病。目前,这两种技术在很大程度上仍然相互独立,而新兴的同载玻片空间多组学方法在分析复杂度、空间分辨率和分析方法上通常存在局限性。我们介绍了原位高分辨率转录组详细表型分析(IN-DEPTH),这是一种与各种空间平台兼容的简化且资源高效的方法。这种迭代方法首先需要进行单细胞空间蛋白质组学和快速分析,以指导后续在同一张载玻片上进行空间转录组捕获,而不会导致RNA信号丢失。为了实现当前方法无法获得的多模态见解,我们引入了k带限谱图互相关(SGCC)用于综合空间多组学分析。将IN-DEPTH和SGCC应用于淋巴组织,证明了精确的单细胞表型分析和细胞类型特异性转录组捕获,并准确解析了与生发中心细胞组织相关的局部和全局转录组变化。然后,我们实施IN-DEPTH和SGCC来剖析 Epstein-Barr病毒(EBV)阳性和EBV阴性弥漫性大B细胞淋巴瘤(DLBCL)的肿瘤微环境(TME)。我们的结果确定了一个关键的肿瘤-巨噬细胞-CD4 T细胞免疫调节轴,在EBV阳性和EBV阴性DLBCL之间受到不同的调节,以及它在协调免疫功能障碍和抑制中的核心作用。IN-DEPTH能够对组织进行可扩展、资源高效且全面的空间多组学剖析,以推动临床相关发现。