Suppr超能文献

空间形态蛋白质组学特征可从组织结构预测疾病状态。

Spatial morphoproteomic features predict disease states from tissue architectures.

作者信息

Hu Thomas, Ozturk Efe, Allam Mayar, Nishkala Naga, Kaushik Vikram, Goudy Steven L, Xu Qin, Mudd Pamela, Manthiram Kalpana, Coskun Ahmet F

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

iScience. 2025 Jul 24;28(8):113204. doi: 10.1016/j.isci.2025.113204. eCollection 2025 Aug 15.

Abstract

Understanding how immune cells organize within tissue microenvironments is essential for interpreting disease responses in spatial proteomics data. We introduce SNOWFLAKE, a graph neural network pipeline that integrates single-cell protein expression and morphological features to predict disease status from lymphoid follicles. Using a pediatric COVID-19 dataset, SNOWFLAKE outperformed conventional machine learning and deep learning approaches in classifying infection status. By incorporating morphology into graph edge features, SNOWFLAKE enables the identification of spatially organized subgraphs associated with disease. These subgraphs, derived from single-cell neighborhoods, display clear distinctions between COVID-positive and negative cases and reveal interpretable cellular motifs. SNOWFLAKE's ability to extract meaningful subgraph embeddings highlights its value in understanding immune architecture and its alterations in disease. The approach generalizes across tissue types, including breast cancer and tertiary lymphoid structures, underscoring its utility for spatial systems biology and biomarker discovery from multiplex imaging data.

摘要

了解免疫细胞如何在组织微环境中组织对于解释空间蛋白质组学数据中的疾病反应至关重要。我们引入了SNOWFLAKE,这是一种图神经网络管道,它整合单细胞蛋白质表达和形态特征,以从淋巴滤泡预测疾病状态。使用儿科COVID-19数据集,SNOWFLAKE在对感染状态进行分类方面优于传统机器学习和深度学习方法。通过将形态学纳入图边缘特征,SNOWFLAKE能够识别与疾病相关的空间组织子图。这些源自单细胞邻域的子图在COVID阳性和阴性病例之间显示出明显差异,并揭示了可解释的细胞基序。SNOWFLAKE提取有意义的子图嵌入的能力突出了其在理解免疫结构及其疾病变化方面的价值。该方法可推广到包括乳腺癌和三级淋巴结构在内的多种组织类型,强调了其在空间系统生物学和从多重成像数据中发现生物标志物方面的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8af4/12356389/1da383776afa/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验