Suppr超能文献

利用人工智能实现儿科超声心动图的自动化视图分类模型。

An Automated View Classification Model for Pediatric Echocardiography Using Artificial Intelligence.

机构信息

Department of Cardiology, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.

One Brave Idea, Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.

出版信息

J Am Soc Echocardiogr. 2022 Dec;35(12):1238-1246. doi: 10.1016/j.echo.2022.08.009. Epub 2022 Aug 29.

Abstract

BACKGROUND

View classification is a key step toward building a fully automated system for interpretation of echocardiograms. However, compared with adult echocardiograms, creating a view classification model for pediatric echocardiograms poses additional challenges, such as greater variation in anatomy, structure size, and views. The aim of this study was to develop a computer vision model to autonomously perform view classification on pediatric echocardiographic images.

METHODS

Using a training set of 12,067 echocardiographic images from patients aged 0 to 19 years, a convolutional neural network model was trained to identify 27 preselected standard pediatric echocardiographic views which included anatomic sweeps, color Doppler, and Doppler tracings. A validation set of 6,197 images was used for parameter tuning and model selection. A test set of 9,684 images from 100 different patients was then used to evaluate model accuracy. The model was also evaluated on a per study basis using a second test set consisting of 524 echocardiograms from children with leukemia to identify six preselected views pertinent to cardiac dysfunction surveillance.

RESULTS

The model identified the 27 preselected views with 90.3% accuracy. Accuracy was similar across age groups (89.3% for 0-4 years, 90.8% for 4-9 years, 90.0% for 9-14 years, and 91.2% for 14-19 years; P = .12). Examining the view subtypes, accuracy was 78.3% for the cine one location, 90.5% for sweeps with color Doppler, 82.2% for sweeps without color Doppler, and 91.1% for Doppler tracings. Among the leukemia cohort, the model identified the six preselected views on a per study basis with a positive predictive value of 98.7% to 99.2% and sensitivity of 76.9% to 94.8%.

CONCLUSIONS

A convolutional neural network model was constructed for view classification of pediatric echocardiograms that was accurate across the spectrum of ages and view types. This work lays the foundation for automated quantitative analysis and diagnostic support to promote efficient, accurate, and scalable analysis of pediatric echocardiograms.

摘要

背景

视图分类是构建超声心动图自动解读系统的关键步骤。然而,与成人超声心动图相比,为儿科超声心动图创建视图分类模型还存在其他挑战,例如解剖结构、结构大小和视图的变化更大。本研究旨在开发一种计算机视觉模型,以便自主对儿科超声心动图像进行视图分类。

方法

使用来自 0 至 19 岁患者的 12067 张超声心动图像的训练集,训练卷积神经网络模型以识别 27 个预先选择的标准儿科超声心动图视图,包括解剖扫查、彩色多普勒和多普勒描记。使用 6197 张图像的验证集进行参数调整和模型选择。然后使用来自 100 位不同患者的 9684 张图像的测试集评估模型准确性。还基于每个研究使用第二个测试集评估模型,该测试集由 524 张来自白血病儿童的超声心动图组成,用于识别与心脏功能障碍监测相关的六个预先选择的视图。

结果

该模型以 90.3%的准确率识别了 27 个预先选择的视图。在不同年龄段之间的准确率相似(0-4 岁为 89.3%,4-9 岁为 90.8%,9-14 岁为 90.0%,14-19 岁为 91.2%;P=0.12)。检查视图亚型,电影单部位的准确率为 78.3%,彩色多普勒扫查的准确率为 90.5%,无彩色多普勒扫查的准确率为 82.2%,多普勒描记的准确率为 91.1%。在白血病队列中,该模型基于每个研究识别了六个预先选择的视图,阳性预测值为 98.7%至 99.2%,灵敏度为 76.9%至 94.8%。

结论

为儿科超声心动图构建了视图分类的卷积神经网络模型,该模型在各个年龄段和视图类型中均具有准确性。这项工作为自动定量分析和诊断支持奠定了基础,以促进儿科超声心动图的高效、准确和可扩展分析。

相似文献

1
An Automated View Classification Model for Pediatric Echocardiography Using Artificial Intelligence.
J Am Soc Echocardiogr. 2022 Dec;35(12):1238-1246. doi: 10.1016/j.echo.2022.08.009. Epub 2022 Aug 29.
3
Fast and accurate view classification of echocardiograms using deep learning.
NPJ Digit Med. 2018;1. doi: 10.1038/s41746-017-0013-1. Epub 2018 Mar 21.
4
Automated Recognition of Regional Wall Motion Abnormalities Through Deep Neural Network Interpretation of Transthoracic Echocardiography.
Circulation. 2020 Oct 20;142(16):1510-1520. doi: 10.1161/CIRCULATIONAHA.120.047530. Epub 2020 Sep 23.
5
Machine Learning for Pediatric Echocardiographic Mitral Regurgitation Detection.
J Am Soc Echocardiogr. 2023 Jan;36(1):96-104.e4. doi: 10.1016/j.echo.2022.09.017. Epub 2022 Sep 30.
6
Impact of telemedicine on the practice of pediatric cardiology in community hospitals.
Pediatrics. 2002 Jan;109(1):E3. doi: 10.1542/peds.109.1.e3.
7
Automatic view classification of contrast and non-contrast echocardiography.
Front Cardiovasc Med. 2022 Sep 14;9:989091. doi: 10.3389/fcvm.2022.989091. eCollection 2022.
8
[Recognition of abnormal changes in echocardiographic videos by an artificial intelligence assisted diagnosis model based on 3D CNN].
Zhonghua Xin Xue Guan Bing Za Zhi. 2023 Jul 24;51(7):750-758. doi: 10.3760/cma.j.cn112148-20230202-00058.
9
Fully Automated Echocardiogram Interpretation in Clinical Practice.
Circulation. 2018 Oct 16;138(16):1623-1635. doi: 10.1161/CIRCULATIONAHA.118.034338.
10
Automated Echocardiographic Detection of Severe Coronary Artery Disease Using Artificial Intelligence.
JACC Cardiovasc Imaging. 2022 May;15(5):715-727. doi: 10.1016/j.jcmg.2021.10.013. Epub 2021 Dec 15.

引用本文的文献

1
Artificial intelligence in cardiovascular procedures: a bibliometric and visual analysis study.
Ann Med Surg (Lond). 2025 Feb 28;87(4):2187-2203. doi: 10.1097/MS9.0000000000003112. eCollection 2025 Apr.
2
Artificial Intelligence in Diagnosis of Heart Failure.
J Am Heart Assoc. 2025 Apr 15;14(8):e039511. doi: 10.1161/JAHA.124.039511. Epub 2025 Apr 10.
4
Deep Learning Applications in 12-lead Electrocardiogram and Echocardiogram.
JMA J. 2025 Jan 15;8(1):102-112. doi: 10.31662/jmaj.2024-0195. Epub 2024 Sep 27.
5
AI in Echocardiography: State-of-the-art Automated Measurement Techniques and Clinical Applications.
JMA J. 2025 Jan 15;8(1):141-150. doi: 10.31662/jmaj.2024-0180. Epub 2024 Dec 6.
6
Artificial Intelligence in Fetal and Pediatric Echocardiography.
Children (Basel). 2024 Dec 25;12(1):14. doi: 10.3390/children12010014.
7
Accurately assessing congenital heart disease using artificial intelligence.
PeerJ Comput Sci. 2024 Nov 29;10:e2535. doi: 10.7717/peerj-cs.2535. eCollection 2024.
9
Pediatric ECG-Based Deep Learning to Predict Left Ventricular Dysfunction and Remodeling.
Circulation. 2024 Mar 19;149(12):917-931. doi: 10.1161/CIRCULATIONAHA.123.067750. Epub 2024 Feb 5.
10
Role of artificial intelligence in early detection of congenital heart diseases in neonates.
Front Digit Health. 2024 Jan 11;5:1345814. doi: 10.3389/fdgth.2023.1345814. eCollection 2023.

本文引用的文献

1
Towards automatic diagnosis of rheumatic heart disease on echocardiographic exams through video-based deep learning.
J Am Med Inform Assoc. 2021 Aug 13;28(9):1834-1842. doi: 10.1093/jamia/ocab061.
2
An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease.
Nat Med. 2021 May;27(5):882-891. doi: 10.1038/s41591-021-01342-5. Epub 2021 May 14.
4
Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use.
JAMA Cardiol. 2021 Jun 1;6(6):624-632. doi: 10.1001/jamacardio.2021.0185.
5
Automated interpretation of congenital heart disease from multi-view echocardiograms.
Med Image Anal. 2021 Apr;69:101942. doi: 10.1016/j.media.2020.101942. Epub 2020 Dec 26.
6
Use of Machine Learning to Improve Echocardiographic Image Interpretation Workflow: A Disruptive Paradigm Change?
J Am Soc Echocardiogr. 2021 Apr;34(4):443-445. doi: 10.1016/j.echo.2020.11.017. Epub 2020 Dec 1.
7
Automated extraction of left atrial volumes from two-dimensional computer tomography images using a deep learning technique.
Int J Cardiol. 2020 Oct 1;316:272-278. doi: 10.1016/j.ijcard.2020.03.075. Epub 2020 Apr 11.
8
Mitral Annulus Segmentation Using Deep Learning in 3-D Transesophageal Echocardiography.
IEEE J Biomed Health Inform. 2020 Apr;24(4):994-1003. doi: 10.1109/JBHI.2019.2959430. Epub 2019 Dec 12.
10
Fast and accurate view classification of echocardiograms using deep learning.
NPJ Digit Med. 2018;1. doi: 10.1038/s41746-017-0013-1. Epub 2018 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验