Suppr超能文献

人工智能和机器学习在心脏麻醉学中的概述及临床应用。

Overview and Clinical Applications of Artificial Intelligence and Machine Learning in Cardiac Anesthesiology.

机构信息

Department of Anesthesiology, University of Michigan Medicine, Ann Arbor, MI.

Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA.

出版信息

J Cardiothorac Vasc Anesth. 2024 May;38(5):1211-1220. doi: 10.1053/j.jvca.2024.02.004. Epub 2024 Feb 15.

Abstract

Artificial intelligence- (AI) and machine learning (ML)-based applications are becoming increasingly pervasive in the healthcare setting. This has in turn challenged clinicians, hospital administrators, and health policymakers to understand such technologies and develop frameworks for safe and sustained clinical implementation. Within cardiac anesthesiology, challenges and opportunities for AI/ML to support patient care are presented by the vast amounts of electronic health data, which are collected rapidly, interpreted, and acted upon within the periprocedural area. To address such challenges and opportunities, in this article, the authors review 3 recent applications relevant to cardiac anesthesiology, including depth of anesthesia monitoring, operating room resource optimization, and transthoracic/transesophageal echocardiography, as conceptual examples to explore strengths and limitations of AI/ML within healthcare, and characterize this evolving landscape. Through reviewing such applications, the authors introduce basic AI/ML concepts and methodologies, as well as practical considerations and ethical concerns for initiating and maintaining safe clinical implementation of AI/ML-based algorithms for cardiac anesthesia patient care.

摘要

人工智能(AI)和机器学习(ML)为基础的应用程序在医疗保健领域变得越来越普遍。这反过来又要求临床医生、医院管理人员和卫生政策制定者了解这些技术,并为安全和持续的临床实施制定框架。在心脏麻醉学中,大量的电子健康数据在围手术期内迅速收集、解释和处理,为 AI/ML 支持患者护理带来了挑战和机遇。为了应对这些挑战和机遇,本文作者回顾了 3 个与心脏麻醉学相关的最新应用,包括麻醉深度监测、手术室资源优化和经胸/经食管超声心动图,作为探索 AI/ML 在医疗保健中的优势和局限性以及描述这一不断发展的领域的概念性示例。通过审查这些应用程序,作者介绍了基本的 AI/ML 概念和方法,以及在启动和维持 AI/ML 为基础的算法用于心脏麻醉患者护理的安全临床实施方面的实际考虑因素和伦理问题。

相似文献

1
Overview and Clinical Applications of Artificial Intelligence and Machine Learning in Cardiac Anesthesiology.
J Cardiothorac Vasc Anesth. 2024 May;38(5):1211-1220. doi: 10.1053/j.jvca.2024.02.004. Epub 2024 Feb 15.
2
Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations.
Anesthesiology. 2020 Feb;132(2):379-394. doi: 10.1097/ALN.0000000000002960.
3
Strengths-weaknesses-opportunities-threats analysis of artificial intelligence in anesthesiology and perioperative medicine.
Front Digit Health. 2024 Feb 20;6:1316931. doi: 10.3389/fdgth.2024.1316931. eCollection 2024.
4
[Machine learning in anesthesiology].
Anaesthesist. 2020 Aug;69(8):535-543. doi: 10.1007/s00101-020-00764-z.
5
Artificial intelligence and telemedicine in anesthesia: potential and problems.
Minerva Anestesiol. 2022 Sep;88(9):729-734. doi: 10.23736/S0375-9393.21.16241-8. Epub 2022 Feb 14.
6
Artificial intelligence and its clinical application in Anesthesiology: a systematic review.
J Clin Monit Comput. 2024 Apr;38(2):247-259. doi: 10.1007/s10877-023-01088-0. Epub 2023 Oct 21.
7
Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives.
Braz J Phys Ther. 2024 May-Jun;28(3):101083. doi: 10.1016/j.bjpt.2024.101083. Epub 2024 May 21.
9
Machine Learning, Deep Learning, and Closed Loop Devices-Anesthesia Delivery.
Anesthesiol Clin. 2021 Sep;39(3):565-581. doi: 10.1016/j.anclin.2021.03.012. Epub 2021 Jul 12.
10
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.
Comput Biol Med. 2025 Jan;184:109391. doi: 10.1016/j.compbiomed.2024.109391. Epub 2024 Nov 22.

引用本文的文献

1
A review of recent advances in anesthetic drugs for patients undergoing cardiac surgery.
Front Pharmacol. 2025 Feb 18;16:1533162. doi: 10.3389/fphar.2025.1533162. eCollection 2025.
2
Intraoperative Opioid Administration Variation in Cardiac Surgery: Predictable, Yet Not Personalized.
Anesth Analg. 2025 May 1;140(5):1012-1014. doi: 10.1213/ANE.0000000000007203.
3
The anesthesiologist's guide to critically assessing machine learning research: a narrative review.
BMC Anesthesiol. 2024 Dec 18;24(1):452. doi: 10.1186/s12871-024-02840-y.

本文引用的文献

2
Deep learning for transesophageal echocardiography view classification.
Sci Rep. 2024 Jan 2;14(1):11. doi: 10.1038/s41598-023-50735-8.
3
Blinded, randomized trial of sonographer versus AI cardiac function assessment.
Nature. 2023 Apr;616(7957):520-524. doi: 10.1038/s41586-023-05947-3. Epub 2023 Apr 5.
4
A new machine learning algorithm to predict veno-arterial ECMO implantation after post-cardiotomy low cardiac output syndrome.
Anaesth Crit Care Pain Med. 2023 Feb;42(1):101172. doi: 10.1016/j.accpm.2022.101172. Epub 2022 Nov 11.
7
Impact of Processed Electroencephalography in Cardiac Surgery: A Retrospective Analysis.
J Cardiothorac Vasc Anesth. 2022 Sep;36(9):3517-3525. doi: 10.1053/j.jvca.2022.03.030. Epub 2022 Mar 31.
8
Deep Learning to Predict Mortality After Cardiothoracic Surgery Using Preoperative Chest Radiographs.
Ann Thorac Surg. 2023 Jan;115(1):257-264. doi: 10.1016/j.athoracsur.2022.04.056. Epub 2022 May 21.
9
Future Guidelines for Artificial Intelligence in Echocardiography.
J Am Soc Echocardiogr. 2022 Aug;35(8):878-882. doi: 10.1016/j.echo.2022.04.005. Epub 2022 Apr 23.
10
Inference of Brain States Under Anesthesia With Meta Learning Based Deep Learning Models.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:1081-1091. doi: 10.1109/TNSRE.2022.3166517. Epub 2022 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验