Suppr超能文献

人工智能和机器学习在心脏麻醉学中的概述及临床应用。

Overview and Clinical Applications of Artificial Intelligence and Machine Learning in Cardiac Anesthesiology.

机构信息

Department of Anesthesiology, University of Michigan Medicine, Ann Arbor, MI.

Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA.

出版信息

J Cardiothorac Vasc Anesth. 2024 May;38(5):1211-1220. doi: 10.1053/j.jvca.2024.02.004. Epub 2024 Feb 15.

Abstract

Artificial intelligence- (AI) and machine learning (ML)-based applications are becoming increasingly pervasive in the healthcare setting. This has in turn challenged clinicians, hospital administrators, and health policymakers to understand such technologies and develop frameworks for safe and sustained clinical implementation. Within cardiac anesthesiology, challenges and opportunities for AI/ML to support patient care are presented by the vast amounts of electronic health data, which are collected rapidly, interpreted, and acted upon within the periprocedural area. To address such challenges and opportunities, in this article, the authors review 3 recent applications relevant to cardiac anesthesiology, including depth of anesthesia monitoring, operating room resource optimization, and transthoracic/transesophageal echocardiography, as conceptual examples to explore strengths and limitations of AI/ML within healthcare, and characterize this evolving landscape. Through reviewing such applications, the authors introduce basic AI/ML concepts and methodologies, as well as practical considerations and ethical concerns for initiating and maintaining safe clinical implementation of AI/ML-based algorithms for cardiac anesthesia patient care.

摘要

人工智能(AI)和机器学习(ML)为基础的应用程序在医疗保健领域变得越来越普遍。这反过来又要求临床医生、医院管理人员和卫生政策制定者了解这些技术,并为安全和持续的临床实施制定框架。在心脏麻醉学中,大量的电子健康数据在围手术期内迅速收集、解释和处理,为 AI/ML 支持患者护理带来了挑战和机遇。为了应对这些挑战和机遇,本文作者回顾了 3 个与心脏麻醉学相关的最新应用,包括麻醉深度监测、手术室资源优化和经胸/经食管超声心动图,作为探索 AI/ML 在医疗保健中的优势和局限性以及描述这一不断发展的领域的概念性示例。通过审查这些应用程序,作者介绍了基本的 AI/ML 概念和方法,以及在启动和维持 AI/ML 为基础的算法用于心脏麻醉患者护理的安全临床实施方面的实际考虑因素和伦理问题。

相似文献

4
[Machine learning in anesthesiology].[麻醉学中的机器学习]
Anaesthesist. 2020 Aug;69(8):535-543. doi: 10.1007/s00101-020-00764-z.
5
Artificial intelligence and telemedicine in anesthesia: potential and problems.人工智能与麻醉学中的远程医疗:潜力与问题。
Minerva Anestesiol. 2022 Sep;88(9):729-734. doi: 10.23736/S0375-9393.21.16241-8. Epub 2022 Feb 14.
9
Machine Learning, Deep Learning, and Closed Loop Devices-Anesthesia Delivery.机器学习、深度学习和闭环设备-麻醉输送。
Anesthesiol Clin. 2021 Sep;39(3):565-581. doi: 10.1016/j.anclin.2021.03.012. Epub 2021 Jul 12.

本文引用的文献

7
Impact of Processed Electroencephalography in Cardiac Surgery: A Retrospective Analysis.心脏手术中处理脑电图的影响:回顾性分析。
J Cardiothorac Vasc Anesth. 2022 Sep;36(9):3517-3525. doi: 10.1053/j.jvca.2022.03.030. Epub 2022 Mar 31.
9
Future Guidelines for Artificial Intelligence in Echocardiography.超声心动图人工智能的未来指南。
J Am Soc Echocardiogr. 2022 Aug;35(8):878-882. doi: 10.1016/j.echo.2022.04.005. Epub 2022 Apr 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验