Scherbela Michael, Gerard Leon, Grohs Philipp
Faculty of Mathematics, University of Vienna, Vienna, Austria.
Research Network Data Science, University of Vienna, Vienna, Austria.
Nat Commun. 2024 Jan 2;15(1):120. doi: 10.1038/s41467-023-44216-9.
Deep neural networks have become a highly accurate and powerful wavefunction ansatz in combination with variational Monte Carlo methods for solving the electronic Schrödinger equation. However, despite their success and favorable scaling, these methods are still computationally too costly for wide adoption. A significant obstacle is the requirement to optimize the wavefunction from scratch for each new system, thus requiring long optimization. In this work, we propose a neural network ansatz, which effectively maps uncorrelated, computationally cheap Hartree-Fock orbitals, to correlated, high-accuracy neural network orbitals. This ansatz is inherently capable of learning a single wavefunction across multiple compounds and geometries, as we demonstrate by successfully transferring a wavefunction model pre-trained on smaller fragments to larger compounds. Furthermore, we provide ample experimental evidence to support the idea that extensive pre-training of such a generalized wavefunction model across different compounds and geometries could lead to a foundation wavefunction model. Such a model could yield high-accuracy ab-initio energies using only minimal computational effort for fine-tuning and evaluation of observables.
深度神经网络与变分蒙特卡罗方法相结合,已成为求解电子薛定谔方程的一种高度准确且强大的波函数近似方法。然而,尽管这些方法取得了成功且具有良好的扩展性,但计算成本仍然过高,难以广泛应用。一个重大障碍是需要针对每个新系统从头开始优化波函数,因此需要长时间的优化。在这项工作中,我们提出了一种神经网络近似方法,它能有效地将不相关的、计算成本低的哈特里 - 福克轨道映射为相关的、高精度的神经网络轨道。正如我们通过成功地将在较小片段上预训练的波函数模型转移到较大化合物上所证明的那样,这种近似方法本质上能够跨多种化合物和几何结构学习单个波函数。此外,我们提供了大量实验证据来支持这样一种观点,即对这种广义波函数模型在不同化合物和几何结构上进行广泛的预训练可以产生一个基础波函数模型。这样的模型仅需极少的计算量用于微调及可观测量评估,就能产生高精度的从头算能量。