Suppr超能文献

一种将宏基因组、宏耐药组、宏复制组和因果推断相结合的新方法,用于确定导致失调的微生物及其抗生素耐药基因库。

A novel approach for combining the metagenome, metaresistome, metareplicome and causal inference to determine the microbes and their antibiotic resistance gene repertoire that contribute to dysbiosis.

机构信息

Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, USA.

Present address: Microsoft Corporation, GA, Atlanta, USA.

出版信息

Microb Genom. 2022 Dec;8(12). doi: 10.1099/mgen.0.000899.

Abstract

The use of whole metagenomic data to infer the relative abundance of all its microbes is well established. The same data can be used to determine the replication rate of all eubacterial taxa with circular chromosomes. Despite their availability, the replication rate profiles (metareplicome) have not been fully exploited in microbiome analyses. Another relatively new approach is the application of causal inferencing to analyse microbiome data that goes beyond correlational studies. A novel scalable pipeline called MeRRCI (Metagenome, metaResistome, and metaReplicome for Causal Inferencing) was developed. MeRRCI combines efficient computation of the metagenome (bacterial relative abundance), metaresistome (antimicrobial gene abundance) and metareplicome (replication rates), and integrates environmental variables (metadata) for causality analysis using Bayesian networks. MeRRCI was applied to an infant gut microbiome data set to investigate the microbial community's response to antibiotics. Our analysis suggests that the current treatment stratagem contributes to preterm infant gut dysbiosis, allowing a proliferation of pathobionts. The study highlights the specific antibacterial resistance genes that may contribute to exponential cell division in the presence of antibiotics for various pathogens, namely and . These organisms often contribute to the harmful long-term sequelae seen in these young infants.

摘要

利用全宏基因组数据推断其所有微生物的相对丰度已经得到充分证实。同样的数据也可以用来确定所有具有圆形染色体的真细菌类群的复制率。尽管这些数据已经可用,但在微生物组分析中,复制率图谱(元复制组)尚未得到充分利用。另一种相对较新的方法是应用因果推理来分析超越相关性研究的微生物组数据。开发了一种名为 MeRRCI(用于因果推理的宏基因组、元抗药性组和元复制组)的新型可扩展管道。MeRRCI 结合了宏基因组(细菌相对丰度)、元抗药性组(抗生素基因丰度)和元复制组(复制率)的高效计算,并结合贝叶斯网络进行环境变量(元数据)的因果分析。MeRRCI 被应用于婴儿肠道微生物组数据集,以调查微生物群落对抗生素的反应。我们的分析表明,目前的治疗策略导致早产儿肠道菌群失调,允许病原体过度增殖。该研究强调了可能导致各种病原体在抗生素存在下呈指数分裂的特定抗菌耐药基因,即 和 。这些生物体通常会导致这些年幼婴儿出现长期的有害后遗症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abd3/9837561/10428feec82e/mgen-8-899-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验