Suppr超能文献

用于估计阿尔茨海默病遗传风险小鼠模型脑龄并识别重要神经连接的特征注意力图神经网络。

Feature attention graph neural network for estimating brain age and identifying important neural connections in mouse models of genetic risk for Alzheimer's disease.

作者信息

Moon Hae Sol, Mahzarnia Ali, Stout Jacques, Anderson Robert J, Badea Cristian T, Badea Alexandra

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA.

出版信息

bioRxiv. 2023 Dec 14:2023.12.13.571574. doi: 10.1101/2023.12.13.571574.

Abstract

Alzheimer's disease (AD) remains one of the most extensively researched neurodegenerative disorders due to its widespread prevalence and complex risk factors. Age is a crucial risk factor for AD, which can be estimated by the disparity between physiological age and estimated brain age. To model AD risk more effectively, integrating biological, genetic, and cognitive markers is essential. Here, we utilized mouse models expressing the major APOE human alleles and human nitric oxide synthase 2 to replicate genetic risk for AD and a humanized innate immune response. We estimated brain age employing a multivariate dataset that includes brain connectomes, APOE genotype, subject traits such as age and sex, and behavioral data. Our methodology used Feature Attention Graph Neural Networks (FAGNN) for integrating different data types. Behavioral data were processed with a 2D Convolutional Neural Network (CNN), subject traits with a 1D CNN, brain connectomes through a Graph Neural Network using quadrant attention module. The model yielded a mean absolute error for age prediction of 31.85 days, with a root mean squared error of 41.84 days, outperforming other, reduced models. In addition, FAGNN identified key brain connections involved in the aging process. The highest weights were assigned to the connections between cingulum and corpus callosum, striatum, hippocampus, thalamus, hypothalamus, cerebellum, and piriform cortex. Our study demonstrates the feasibility of predicting brain age in models of aging and genetic risk for AD. To verify the validity of our findings, we compared Fractional Anisotropy (FA) along the tracts of regions with the highest connectivity, the Return-to-Origin Probability (RTOP), Return-to-Plane Probability (RTPP), and Return-to-Axis Probability (RTAP), which showed significant differences between young, middle-aged, and old age groups. Younger mice exhibited higher FA, RTOP, RTAP, and RTPP compared to older groups in the selected connections, suggesting that degradation of white matter tracts plays a critical role in aging and for FAGNN's selections. Our analysis suggests a potential neuroprotective role of APOE2, relative to APOE3 and APOE4, where APOE2 appears to mitigate age-related changes. Our findings highlighted a complex interplay of genetics and brain aging in the context of AD risk modeling.

摘要

阿尔茨海默病(AD)由于其广泛的患病率和复杂的风险因素,仍然是研究最为广泛的神经退行性疾病之一。年龄是AD的一个关键风险因素,可以通过生理年龄与估计脑年龄之间的差异来估算。为了更有效地模拟AD风险,整合生物学、遗传学和认知标志物至关重要。在此,我们利用表达主要APOE人类等位基因和人类一氧化氮合酶2的小鼠模型来复制AD的遗传风险和人源化的先天免疫反应。我们使用一个多变量数据集来估计脑年龄,该数据集包括脑连接组、APOE基因型、年龄和性别等个体特征以及行为数据。我们的方法使用特征注意力图神经网络(FAGNN)来整合不同的数据类型。行为数据用二维卷积神经网络(CNN)处理,个体特征用一维CNN处理,脑连接组通过使用象限注意力模块的图神经网络处理。该模型在年龄预测方面的平均绝对误差为31.85天,均方根误差为41.84天,优于其他简化模型。此外,FAGNN识别出了参与衰老过程的关键脑连接。最高权重被赋予了扣带与胼胝体、纹状体、海马体、丘脑、下丘脑、小脑和梨状皮质之间的连接。我们的研究证明了在衰老模型和AD遗传风险模型中预测脑年龄的可行性。为了验证我们研究结果的有效性,我们比较了连接性最高区域的纤维束上的分数各向异性(FA)、返回原点概率(RTOP)、返回平面概率(RTPP)和返回轴概率(RTAP),结果显示年轻、中年和老年组之间存在显著差异。在所选连接中,与老年组相比,年轻小鼠表现出更高的FA、RTOP、RTAP和RTPP,这表明白质纤维束的退化在衰老和FAGNN的选择中起着关键作用。我们的分析表明,相对于APOE3和APOE4,APOE2具有潜在的神经保护作用,其中APOE2似乎减轻了与年龄相关的变化。我们从AD风险建模的角度突出了遗传学与脑衰老之间复杂的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58b3/10760088/518ad65b52e6/nihpp-2023.12.13.571574v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验